示例#1
0
    def check_var(self, dae_t, *args, **kwargs):

        # Storage:
        # Output values is in the first col.
        # Latest values are stored in /appended to the last column
        self.rewind = False

        if dae_t == 0:
            self._v_mem[:] = self.u.v[:, None]

        elif dae_t < self.t[-1]:
            self.rewind = True
            self.t[-1] = dae_t
            self._v_mem[:, -1] = self.u.v

        elif dae_t == self.t[-1]:
            self._v_mem[:, -1] = self.u.v

        elif dae_t > self.t[-1]:
            if self.mode == 'step':
                self.t[:-1] = self.t[1:]
                self.t[-1] = dae_t

                self._v_mem[:, :-1] = self._v_mem[:, 1:]
                self._v_mem[:, -1] = self.u.v
            else:
                self.t = np.append(self.t, dae_t)
                self._v_mem = np.hstack((self._v_mem, self.u.v[:, None]))

                if dae_t - self.t[0] > self.delay:
                    t_interp = dae_t - self.delay
                    idx = np.argmax(self.t >= t_interp) - 1
                    v_interp = interp_n2(t_interp, self.t[idx:idx + 2],
                                         self._v_mem[:, idx:idx + 2])

                    self.t[idx] = t_interp
                    self._v_mem[:, idx] = v_interp

                    self.t = np.delete(self.t, np.arange(0, idx))
                    self._v_mem = np.delete(self._v_mem,
                                            np.arange(0, idx),
                                            axis=1)

        self.v[:] = self._v_mem[:, 0]
示例#2
0
    def run(self, **kwargs):
        succeed = False
        system = self.system
        self.singular_idx = np.array([], dtype=int)

        if system.PFlow.converged is False:
            logger.warning(
                'Power flow not solved. Eig analysis will not continue.')
            return succeed
        else:
            if system.TDS.initialized is False:
                system.TDS.init()
                system.TDS._itm_step()

        if system.dae.n == 0:
            logger.error('No dynamic model. Eig analysis will not continue.')

        else:
            if sum(system.dae.Tf != 0) != len(system.dae.Tf):
                self.singular_idx = np.argwhere(np.equal(
                    system.dae.Tf, 0.0)).ravel().astype(int)
                logger.info(
                    f"System contains {len(self.singular_idx)} zero time constants. "
                )
                logger.debug([system.dae.x_name[i] for i in self.singular_idx])

            self.x_name = np.array(system.dae.x_name)
            self.x_name = np.delete(self.x_name, self.singular_idx)

            self.summary()
            t1, s = elapsed()

            self.calc_state_matrix()
            self.remove_singular_rc()
            self.calc_part_factor()

            if not self.system.files.no_output:
                self.report()
                if system.options.get('state_matrix') is True:
                    self.export_state_matrix()

            if self.config.plot:
                self.plot()
            _, s = elapsed(t1)
            logger.info('Eigenvalue analysis finished in {:s}.'.format(s))

            succeed = True

        system.exit_code = 0 if succeed else 1
        return succeed
示例#3
0
 def remove_singular_rc(self):
     """
     Remove rows and cols associated with zero time constant.
     """
     self.As = np.delete(self.As, self.singular_idx, axis=0)
     self.As = np.delete(self.As, self.singular_idx, axis=1)