def prepare_data(): openp = data_original[:, 1].tolist()[0:] highp = data_original[:, 2].tolist()[0:] lowp = data_original[:, 3].tolist()[0:] closep = data_original[:, 4].tolist()[0:] volumep = data_original[:, 5].tolist()[0:] #open = data_original['Open'].rolling(21).mean() #high = data_original['High'].rolling(21).mean() #low = data_original['low'].rolling(21).mean() close = pd.DataFrame(closep).rolling(21, min_periods=0).mean() close_ema = pd.DataFrame(closep).ewm(span=21,min_periods=21-1 ,adjust=False).mean() print(close) print("ema: ", close_ema) #macdk= ta.MACD(np.array(closep)) #print("macd ",macdk) x_i = np.column_stack((openp, highp, lowp, closep, volumep,close)) print("len", (len(x_i))) # print("X_i",x_i) y_i = closep x, y = np.array(x_i), np.array(y_i) tr_date, ts_date, X_train, X_test, Y_train, Y_test = create_Xt_Yt(timestamp, x, y) return tr_date, ts_date, X_train, X_test, Y_train, Y_test print("fun prepare_Data ended!!! ")
def data_sets(labels, volumep1, p_sets, y_i, timestamp): for i in range(1, len(p_sets), 1): ps = p_sets[i] label = labels[i] x_i = np.column_stack(ps) x_i, y_i = np.array(x_i), np.array(y_i) #print('ps: ' + str(i) + "", ps) print("len of p: " + str(i) + ": ", len(ps)) #print('x_ ' + str(i) + ": ", x_i) tr_date, ts_date, X_train, X_test, Y_train, Y_test = create_Xt_Yt( timestamp, x_i, y_i) prepare_model(i, label, volumep1, tr_date, ts_date, X_train, X_test, Y_train, Y_test)
def prepare_data(data_original, timestamp): openp = data_original[:, 1].tolist()[0:] highp = data_original[:, 2].tolist()[0:] lowp = data_original[:, 3].tolist()[0:] closep = data_original[:, 4].tolist()[0:] volumep = data_original[:, 5].tolist()[0:] x_i = np.column_stack((openp, highp, lowp, closep, volumep)) print("len", (len(x_i))) # print("X_i",x_i) y_i = closep x, y = np.array(x_i), np.array(y_i) tr_date, ts_date, X_train, X_test, Y_train, Y_test = create_Xt_Yt( timestamp, x, y) return tr_date, ts_date, X_train, X_test, Y_train, Y_test
def prepare_data(data_original, timestamp): openp = data_original[:, 1].tolist()[0:] highp = data_original[:, 2].tolist()[0:] lowp = data_original[:, 3].tolist()[0:] closep = data_original[:, 4].tolist()[0:] volumep = data_original[:, 5].tolist()[0:] x, y = [], [] x_i = np.column_stack((openp, highp, lowp, closep, volumep)) print("len", (len(x_i))) # print("X_i",x_i) y_i = volumep # print("closeP: ",pd.DataFrame(y_i)) x, y = np.array(x_i), np.array(y_i) # print("X",X) tr_date, ts_date, X_train, X_test, Y_train, Y_test = create_Xt_Yt( timestamp, x, y) return tr_date, ts_date, X_train, X_test, Y_train, Y_test print("fun prepare_Data ended!!! ")
def prepare_data(data_original, timestamp): ''' openp = data_original[:, 1].tolist()[0:] highp = data_original[:, 2].tolist()[0:] lowp = data_original[:, 3].tolist()[0:] closep = data_original[:, 4].tolist()[0:] volumep = data_original[:, 5].tolist()[0:] ''' openp = data_original.ix[:, 'Open'].tolist()[0:] highp = data_original.ix[:, 'High'].tolist()[0:] lowp = data_original.ix[:, 'Low'].tolist()[0:] closep = data_original.ix[:, 'Close'].tolist()[0:] volumep = data_original.ix[:, 'Volume_(BTC)'].tolist()[0:] print(openp) #volumecp = data_original.ix[:, 'Volume_(Currency)'].tolist()[1:] x, y = [], [] X, Y = [], [] for i in range(0, len(data_original), STEP): try: o = openp[i:i + window] h = highp[i:i + window] l = lowp[i:i + window] c = closep[i:i + window] v = volumep[i:i + window] #vc = volumecp[i:i + window] #volat = volatility[i:i + window] print("o ", o) o = (np.array(o) - np.mean(o)) / np.std(o) print("mean o ", o) h = (np.array(h) - np.mean(h)) / np.std(h) l = (np.array(l) - np.mean(l)) / np.std(l) c = (np.array(c) - np.mean(c)) / np.std(c) v = (np.array(v) - np.mean(v)) / np.std(v) #vc = (np.array(vc) - np.mean(vc)) / np.std(vc) #volat = (np.array(volat) - np.mean(volat)) / np.std(volat) x_i = np.column_stack((o, h, l, c, v)) x_i = x_i.flatten() y_i = (closep[i + window + FORECAST] - closep[i + window]) / closep[i + window] if np.isnan(x_i).any(): continue except Exception as e: break x.append(x_i) y.append(y_i) ''' x_i = np.column_stack((openp, highp, lowp, closep, volumep)) print("len", (len(x_i))) # print("X_i",x_i) y_i = closep # print("closeP: ",pd.DataFrame(y_i)) ''' x, y = np.array(x), np.array(y) # print("X",X) print(len(x), len(y)) tr_date, ts_date, X_train, X_test, Y_train, Y_test = create_Xt_Yt( timestamp, x, y) return tr_date, ts_date, X_train, X_test, Y_train, Y_test print("fun prepare_Data ended!!! ")