示例#1
0
 def _optimize(self, c):
     g = c.to_graph()
     zx.full_reduce(g, quiet=True)
     g.normalize()
     gs = pivot_anneal(g, iters=5, cool=0.0025, score=self.twoq_score)
     c_opt = zx.extract_circuit(gs)
     c_opt = self.post_process(c_opt)
     return c_opt
示例#2
0
def sa_with_restarts(g, n_restarts=3, n_iters=2500, quiet=True):
    best_g = g.copy()
    best_score = g_score(best_g)
    for i in range(n_restarts):
        g_sa, _ = pivot_anneal(g, iters=n_iters, quiet=quiet)
        trial_score = g_score(g_sa)
        if trial_score < best_score or i == 0:
            best_score = trial_score
            best_g = g_sa.copy()
    return best_g
        g_tmp = g.copy()

        if REDUCE_METHOD == "TR":
            zx.teleport_reduce(g_tmp)
            c_tr = zx.Circuit.from_graph(g_tmp.copy()).to_basic_gates()
            c_tr = zx.basic_optimization(c_tr)
            g_simp = c_tr.to_graph()
        elif REDUCE_METHOD == "FR":
            zx.full_reduce(g_tmp)
            g_simp = g_tmp.copy()
        else:
            raise RuntimeError(f"Invalid REDUCE_METHOD: {REDUCE_METHOD}")

        to_graph_like(g_simp)

        _, scores = pivot_anneal(g_simp, iters=N_ITERS)
        final_score = scores[-1]
        for x in range(0, N_ITERS, INTERVAL):
            if final_score < scores[x]:
                improvement_after[x].append(1)
            else:
                improvement_after[x].append(0)


    pdb.set_trace()

    improvement_after_probs = {k: np.mean(v) for k, v in improvement_after.items()}
    xs = list(improvement_after_probs.keys())
    ys = list(improvement_after_probs.values())
    plt.rcParams.update({'font.size': 14})
    plt.scatter(xs, ys)
示例#4
0
    axes[0].plot(list(range(len(reductions))), reductions)
    axes[0].set_xlabel("Generation")
    axes[0].set_ylabel("Reduction")
    axes[0].set_title(f"GA: {N_MUTANTS} mutants, {N_GENS} generations")
    axes[0].legend()

    ## SA part

    reductions = list()
    N_TRIALS = 10
    N_ITERS = 1000

    init_score = 4 * c_tr.twoqubitcount() + c_tr.tcount()
    for i in tqdm(range(N_TRIALS)):
        g_anneal, _ = sa.pivot_anneal(g_tr.copy(),
                                      iters=N_ITERS,
                                      score=sa.c_score)
        zx.full_reduce(g_anneal)
        c_anneal = zx.extract_circuit(g_anneal.copy()).to_basic_gates()
        c_anneal = zx.basic_optimization(c_anneal)

        trial_score = 4 * c_anneal.twoqubitcount() + c_anneal.tcount()
        reduction = (init_score - trial_score) / init_score * 100
        reductions.append(reduction)

        # print(f"\n----- trial {i} -----")
        # print(c_anneal.stats())
    """
    plt.hist(reductions)
    plt.xlabel("Reduction")
    plt.ylabel("Frequency")