示例#1
0
def test_training_infer(config):
    """Test anomaly detection training on public dataset."""
    model_adapter = SomModelAdapter(
        SomStorageAdapter(config=config, feedback_strategy=None))
    tc_train = SomTrainCommand(node_map=2,
                               model_adapter=model_adapter,
                               recreate_model=True)
    result, dist = tc_train.execute()
    assert result == 0
    model_adapter = SomModelAdapter(
        SomStorageAdapter(config=config, feedback_strategy=None))
    tc_infer = SomInferCommand(model_adapter=model_adapter, sleep=False)
    result = tc_infer.execute()
    assert result == 0
def test_model_shape(config):
    """Test that the trained model size is expected based on given parameters."""
    storage_adapter = SomStorageAdapter(config=config, feedback_strategy=None)
    model_adapter = SomModelAdapter(storage_adapter=storage_adapter)
    tc = SomTrainJob(node_map=2, model_adapter=model_adapter)
    result, dist = tc.execute()
    assert model_adapter.model.model.shape[0:2] == (2, 2)
def test_output_length(config):
    """Test that correct number of outputs are generated with Hadoop_2k.json."""
    storage_adapter = SomStorageAdapter(config=config, feedback_strategy=None)
    model_adapter = SomModelAdapter(storage_adapter=storage_adapter)
    tc = SomTrainJob(node_map=2, model_adapter=model_adapter)
    result, dist = tc.execute()
    assert len(dist) == 2000
def test_output_values(config):
    """Test that all distance values in training set are less than or equal to 1 on Hadoop_2k.json."""
    storage_adapter = SomStorageAdapter(config=config, feedback_strategy=None)
    model_adapter = SomModelAdapter(storage_adapter=storage_adapter)
    tc = SomTrainJob(node_map=2, model_adapter=model_adapter)
    result, dist = tc.execute()
    assert sum(dist) <= 2000
示例#5
0
def test_end2endtraining(config):
    """Test anomaly detection training on public dataset."""
    storage_adapter = SomStorageAdapter(config=config, feedback_strategy=None)
    model_adapter = SomModelAdapter(storage_adapter=storage_adapter)
    tc = SomTrainCommand(node_map=2, model_adapter=model_adapter)
    result, dist = tc.execute()
    assert result == 0
 def __init__(self, config, feedback_strategy=None):
     """Abstraction around model adapter run method."""
     if feedback_strategy is None:
         feedback_strategy = FeedbackStrategy(config=config)
     storage_adapter = SomStorageAdapter(config, feedback_strategy)
     self.__model_adapter = SomModelAdapter(storage_adapter)
     self.mgr = TaskQueue()
示例#7
0
def test_log_similarity(cnf_hadoop2k_w2v_params):
    """Check that two words have consistent similar logs after training."""
    storage_adapter = SomStorageAdapter(config=cnf_hadoop2k_w2v_params,
                                        feedback_strategy=None)
    model_adapter = SomModelAdapter(storage_adapter=storage_adapter)
    tc = SomTrainJob(node_map=2, model_adapter=model_adapter)
    result, dist = tc.execute()
    log_1 = 'INFOmainorgapachehadoopmapreducevappMRAppMasterExecutingwithtokens'
    answer_1 = 'INFOmainorgapachehadoopmapreducevappMRAppMasterCreatedMRAppMasterforapplicationappattempt'

    match_1 = [
        model_adapter.w2v_model.model["message"].wv.most_similar(log_1)[i][0]
        for i in range(3)
    ]
    assert answer_1 in match_1

    log_2 = 'ERRORRMCommunicatorAllocatororgapachehadoopmapreducevapprmRMContainerAllocatorERRORINCONTACTINGRM'
    answer_2 = 'WARNLeaseRenewermsrabimsrasaorgapachehadoophdfsLeaseRenewerFailedtorenewleaseforDFSClient' \
               'NONMAPREDUCEforsecondsWillretryshortly'
    match_2 = [
        model_adapter.w2v_model.model["message"].wv.most_similar(log_2)[i][0]
        for i in range(3)
    ]
    logging.info(match_2[0])
    assert answer_2 in match_2
示例#8
0
def test_vocab_length(config):
    """Check length of processed vocab on on Hadoop_2k.json."""
    storage_adapter = SomStorageAdapter(config=config, feedback_strategy=None)
    model_adapter = SomModelAdapter(storage_adapter=storage_adapter)
    tc = SomTrainJob(node_map=2, model_adapter=model_adapter)
    result, dist = tc.execute()

    assert len(model_adapter.w2v_model.model["message"].wv.vocab) == 141
示例#9
0
def test_loss_value(config):
    """Check the loss value is not greater then during testing."""
    storage_adapter = SomStorageAdapter(config=config, feedback_strategy=None)
    model_adapter = SomModelAdapter(storage_adapter=storage_adapter)
    tc = SomTrainJob(node_map=2, model_adapter=model_adapter)
    result, dist = tc.execute()
    print(model_adapter.w2v_model.model["message"].get_latest_training_loss())
    tl = model_adapter.w2v_model.model["message"].get_latest_training_loss()
    assert tl < 320000.0
示例#10
0
class AnomalyDetectorFacade:
    """For external interface for integration different adapters for custom models and training logic."""
    def __init__(self, config):
        """Abstraction around model adapter run method."""
        storage_adapter = SomStorageAdapter(config)
        self.__model_adapter = SomModelAdapter(storage_adapter)

    def run(self, single_run=False):
        """Abstraction around model adapter run method."""
        self.__model_adapter.run(single_run=single_run)

    def train(self, node_map=24, false_positives=None):
        """Abstraction around model adapter train method."""
        return self.__model_adapter.train(node_map, false_positives)

    def infer(self, false_positives=None):
        """Abstraction around model adapter inference method."""
        return self.__model_adapter.infer(false_positives)
示例#11
0
def get_score(config, node_map, feedback):
    """Simple utility function for injecting custom mock function into Detector."""
    feedback_strategy = FeedbackStrategy(config, fn=feedback)
    storage_adapter = SomStorageAdapter(config=config,
                                        feedback_strategy=feedback_strategy)
    model_adapter = SomModelAdapter(storage_adapter=storage_adapter)
    tc = SomTrainCommand(node_map=node_map, model_adapter=model_adapter)
    success, dist = tc.execute()
    freq_one = dist[-1]
    return freq_one
def test_train_command(cnf_hadoop_2k, pipeline):
    """Test case for validating that when we train a model and add it to task queue that it will run."""
    storage_adapter = SomStorageAdapter(config=cnf_hadoop_2k,
                                        feedback_strategy=None)
    model_adapter = SomModelAdapter(storage_adapter)
    train_job = SomTrainJob(node_map=2, model_adapter=model_adapter)
    pipeline.add_steps(train_job)
    assert len(pipeline) == TASKS_IN_QUEUE
    assert pipeline.count != TASKS_IN_QUEUE
    pipeline.execute_steps()
    assert pipeline.count == TASKS_IN_QUEUE
    def __init__(self, config, feedback_strategy=None, tracing_enabled=False):
        """Set up required properties to run training or prediction.

        :param config: configuration provided via yaml or environment variables
        :param feedback_strategy: a function that runs to improve the feedback of system
        """
        if feedback_strategy is None:
            feedback_strategy = FeedbackStrategy(config=config)
        storage_adapter = SomStorageAdapter(config, feedback_strategy)
        self.__model_adapter = SomModelAdapter(storage_adapter)
        self.tasks = TaskQueue()
        self.tracing_enabled = tracing_enabled
    def test_train_command(self):
        """Test case for validating that when we train a model and add it to task queue that it will run."""
        mgr = TaskQueue()
        config = Configuration(config_yaml="config_files/.env_config.yaml")
        storage_adapter = SomStorageAdapter(config=config, feedback_strategy=None)
        model_adapter = SomModelAdapter(storage_adapter)
        tc = SomTrainCommand(node_map=2, model_adapter=model_adapter)

        mgr.add_steps(tc)
        self.assertEqual(len(mgr), TASKS_IN_QUEUE)
        self.assertNotEqual(mgr.count, TASKS_IN_QUEUE)
        mgr.execute_steps()
        self.assertEqual(mgr.count, TASKS_IN_QUEUE)
        mgr.clear()
    def test_train_command(self):
        """Test case for validating that when we train a model and add it to task queue that it will run."""
        mgr = DetectorPipeline()
        config = Configuration()
        config.STORAGE_DATASOURCE = "local"
        config.STORAGE_DATASINK = "stdout"
        config.LS_INPUT_PATH = "validation_data/Hadoop_2k.json"
        storage_adapter = SomStorageAdapter(config=config, feedback_strategy=None)
        model_adapter = SomModelAdapter(storage_adapter)
        tc = SomTrainJob(node_map=2, model_adapter=model_adapter)

        mgr.add_steps(tc)
        self.assertEqual(len(mgr), TASKS_IN_QUEUE)
        self.assertNotEqual(mgr.count, TASKS_IN_QUEUE)
        mgr.execute_steps()
        self.assertEqual(mgr.count, TASKS_IN_QUEUE)
        mgr.clear()
示例#16
0
 def __init__(self, config):
     """Abstraction around model adapter run method."""
     storage_adapter = SomStorageAdapter(config)
     self.__model_adapter = SomModelAdapter(storage_adapter)