示例#1
0
    def __init__(self, config: Configuration, tracing_enabled: bool = False):
        """Set up required properties to run training or prediction.

        :param config: configuration provided via yaml or environment variables
        """
        self.config = config
        # self.feedback_strategy = feedback_strategy
        self.pipeline = DetectorPipeline()
        self.tracing_enabled = tracing_enabled
示例#2
0
    def __init__(self,
                 config: Configuration,
                 feedback_strategy: FeedbackStrategy = None,
                 tracing_enabled: bool = False):
        """Set up required properties to run training or prediction.

        :param config: configuration provided via yaml or environment variables
        :param feedback_strategy: a function that runs to improve the feedback of system
        """
        self.config = config
        self.feedback_strategy = feedback_strategy
        self.pipeline = DetectorPipeline()
        self.tracing_enabled = tracing_enabled
    def test_valid_command(self):
        """Test case for validating that when we train a model and add it to task queue that it will run."""
        mgr = DetectorPipeline()

        class mock_func(AbstractCommand):
            def execute(self):
                print("Test")

        mock = mock_func()
        mgr.add_steps(mock)
        self.assertEqual(len(mgr), TASKS_IN_QUEUE)
        self.assertNotEqual(mgr.count, TASKS_IN_QUEUE)
        mgr.execute_steps()
        self.assertEqual(mgr.count, TASKS_IN_QUEUE)
        mgr.clear()
    def test_train_command(self):
        """Test case for validating that when we train a model and add it to task queue that it will run."""
        mgr = DetectorPipeline()
        config = Configuration()
        config.STORAGE_DATASOURCE = "local"
        config.STORAGE_DATASINK = "stdout"
        config.LS_INPUT_PATH = "validation_data/Hadoop_2k.json"
        storage_adapter = SomStorageAdapter(config=config, feedback_strategy=None)
        model_adapter = SomModelAdapter(storage_adapter)
        tc = SomTrainJob(node_map=2, model_adapter=model_adapter)

        mgr.add_steps(tc)
        self.assertEqual(len(mgr), TASKS_IN_QUEUE)
        self.assertNotEqual(mgr.count, TASKS_IN_QUEUE)
        mgr.execute_steps()
        self.assertEqual(mgr.count, TASKS_IN_QUEUE)
        mgr.clear()
    def test_invalid_command(self):
        """Test case for validating that when we train a model and add it to task queue that it will run."""
        mgr = DetectorPipeline()

        class mock_func:
            def execute(self):
                print("Test")

        mock = mock_func()
        with self.assertRaises(TypeError) as context:
            mgr.add_steps(mock)
        mgr.clear()
def pipeline():
    """Providing pipeline that clears up history of task runs."""
    pipeline = DetectorPipeline()
    yield pipeline
    pipeline.clear()
示例#7
0
class Facade:
    """For external interface for integration different adapters for custom models and training logic."""
    def __init__(self, config: Configuration, tracing_enabled: bool = False):
        """Set up required properties to run training or prediction.

        :param config: configuration provided via yaml or environment variables
        """
        self.config = config
        # self.feedback_strategy = feedback_strategy
        self.pipeline = DetectorPipeline()
        self.tracing_enabled = tracing_enabled

    @staticmethod
    def create_tracer(service):
        """Initialize tracer for open tracing.

        :param service: service name to use for tracing this application.
        :return: Tracer(opentracing.Tracer)
        """
        logging.getLogger('').handlers = []
        logging.basicConfig(format='%(message)s', level=logging.DEBUG)
        config = Config(
            config={
                'sampler': {
                    'type': 'const',
                    'param': 1,
                },
                'logging': True,
            },
            service_name=service,
        )
        return config.initialize_tracer()

    def run(self, single_run: bool = False):
        """Run train and inference and main event loop.

        :param single_run: if this is set to TRUE then we exit loop after first iteration.
        :return: None
        """
        exit = False
        while exit is False:
            try:
                jobs = DetectorPipelineCatalog(config=self.config,
                                               job="sompy.train.inference")
                self.pipeline = jobs.get_pipeline()
                self.start_job()
                logging.info("Job ran succesfully")
            except EmptyDataSetException as e:
                logging.debug(e)
            finally:
                time.sleep(5)
                exit = single_run

    def start_job(self):
        """Start job to run all steps in workflow."""
        job_id = uuid.uuid4()
        logging.info("Executing job: {}".format(job_id))
        tracer = self.create_tracer('log-anomaly-detection')
        if self.tracing_enabled:
            logging.info("Tracing enabled")
            with tracer.start_span('anomaly_facade_run') as span:
                span.set_tag('job_id', job_id)
                with span_in_context(span):
                    self.pipeline.execute_steps(tracer=tracer)
        else:
            self.pipeline.execute_steps()

    def train(self):
        """Run training of model and provides size of map.

        :return: None
        """
        jobs = DetectorPipelineCatalog(config=self.config, job="sompy.train")

        self.pipeline = jobs.get_pipeline()
        self.start_job()

    def infer(self):
        """Run inference of model.

        :return: None
        """
        jobs = DetectorPipelineCatalog(config=self.config,
                                       job="sompy.inference")
        self.pipeline = jobs.get_pipeline()
        self.start_job()