示例#1
0
    def gen_group_graph(self):
        group_graph = nx.Graph()
        seed_groups = set()
        groups_dic = {}
        for group in self.groups:
            group_type = self.get_group_type(self.groups[group])
            if group_type == 'Seed':
                seed_groups.add(group)
            groups_dic[group] = Node(group, group_type)
        for group in seed_groups:
            groups_dic[group].init_rank = 1 / len(seed_groups)
        valid_pairs = {}
        for n1 in self.graph.nodes:
            neighbors = self.graph.neighbors(n1)
            for n2 in neighbors:
                for g1 in n1.groups:
                    for g2 in n2.groups:
                        valid_pairs[(g1, g2)] = True
        pairs = itertools.combinations(self.groups.keys(), 2)
        pairs = sorted([(f, t) if f < t else (t, f) for f, t in pairs],
                       key=lambda pair: str(pair))
        for source_group, target_group in pairs:
            if (source_group, target_group) not in valid_pairs:
                continue
            removed = set()
            weight = 0
            source_nodes = self.groups[source_group]
            target_nodes = self.groups[target_group]
            for source_node in source_nodes:
                if source_node in removed:
                    continue
                for target_node in target_nodes:
                    if source_node in removed:
                        break
                    if target_node in removed:
                        continue
                    if not self.graph.has_edge(source_node, target_node):
                        continue

                    # set number of common neighbors as the weight of the edge (trustworthy of connection)
                    n1 = self.graph.neighbors(source_node)
                    n2 = self.graph.neighbors(target_node)
                    edge_weight = len(set(list(n1)) & set(list(n2)))
                    if not edge_weight:
                        continue

                    weight += edge_weight
                    removed.add(source_node)
                    removed.add(target_node)

            if weight > 0:
                num = len(source_nodes) + len(target_nodes)
                group_graph.add_edge(groups_dic[source_group],
                                     groups_dic[target_group],
                                     weight=weight / num)
        return group_graph
示例#2
0
 def gen_group_graph(self):
     group_graph = nx.Graph()
     seed_groups = set()
     groups_dic = {}
     for group in self.groups:
         group_type = self.get_group_type(self.groups[group])
         if group_type == 'Seed':
             seed_groups.add(group)
         groups_dic[group] = Node(group, group_type)
     for group in seed_groups:
         groups_dic[group].init_rank = 1 / len(seed_groups)
     pairs = itertools.combinations(self.groups.keys(), 2)
     pairs = sorted([(f, t) if f < t else (t, f) for f, t in pairs],
                    key=lambda pair: str(pair))
     for source_group, target_group in pairs:
         removed = set()
         weight = 0
         source_nodes = self.groups[source_group]
         target_nodes = self.groups[target_group]
         if self.min_group_req > 1:
             source_nodes = filter(
                 lambda n: len(n.groups) >= self.min_group_req,
                 source_nodes)
             target_nodes = filter(
                 lambda n: len(n.groups) >= self.min_group_req,
                 target_nodes)
         for source_node in source_nodes:
             if source_node in removed:
                 continue
             for target_node in target_nodes:
                 if source_node in removed:
                     break
                 if target_node in removed:
                     continue
                 if not self.graph.has_edge(source_node, target_node):
                     continue
                 removed.add(source_node)
                 removed.add(target_node)
                 weight += 1
         if weight > 0:
             num = len(source_nodes) + len(target_nodes)
             group_graph.add_edge(groups_dic[source_group],
                                  groups_dic[target_group],
                                  weight=1.0 * weight / num)
     return group_graph