def testMarkRewindEntire(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) m = stream.mark() # MARK for _ in range(13): # consume til end stream.LT(1) stream.consume() self.failUnlessEqual(EOF, stream.LT(1).getType()) self.failUnlessEqual(UP, stream.LT(-1).getType()) stream.rewind(m) # REWIND # consume til end again :) for _ in range(13): # consume til end stream.LT(1) stream.consume() self.failUnlessEqual(EOF, stream.LT(1).getType()) self.failUnlessEqual(UP, stream.LT(-1).getType())
def norm(formula): '''Computes the bounds of the given TWTL formula and returns a 2-tuple containing the lower and upper bounds, respectively. ''' lexer = twtlLexer(ANTLRStringStream(formula)) tokens = CommonTokenStream(lexer) parser = twtlParser(tokens) phi = parser.formula() # CommonTree t = phi.tree # compute TWTL bound nodes = CommonTreeNodeStream(t) nodes.setTokenStream(tokens) boundEvaluator = bound(nodes) boundEvaluator.eval() return boundEvaluator.getBound()
def testReset(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) v1 = self.toNodesOnlyString(stream) # scan all stream.reset() v2 = self.toNodesOnlyString(stream) # scan all self.assertEquals(v1, v2)
def testReset(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) v1 = self.toNodesOnlyString(stream) # scan all stream.reset() v2 = self.toNodesOnlyString(stream) # scan all self.assertEqual(v1, v2)
def testSeekFromStart(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) stream.seek(7) # seek to 107 self.failUnlessEqual(107, stream.LT(1).getType()) stream.consume() # consume 107 stream.consume() # consume UP stream.consume() # consume UP self.failUnlessEqual(104, stream.LT(1).getType())
def build_code_tree(cls): """ Build the tree from code AST. """ debug('-------------- BUILD TREE ---------------------') cls.nodes = CommonTreeNodeStream(cls.parsed_prog.tree) cls.nodes.setTokenStream(cls.tokens) Status.set_node_stream(cls.nodes) cls.builder = LatteTreeBuilder(cls.nodes) cls.prog_tree = cls.builder.prog() if Status.errors() > 0: Status.add_error(LatteError('parsing failed'), fatal=True) debug('---------------- TREE -------------------------') cls.prog_tree.print_tree()
def testListWithOneNode(self): root = CommonTree(None) root.addChild(CommonTree(CommonToken(101))) stream = CommonTreeNodeStream(root) expecting = "101" found = self.toNodesOnlyString(stream) self.failUnlessEqual(expecting, found) expecting = "101" found = str(stream) self.failUnlessEqual(expecting, found)
def testFlatList(self): root = CommonTree(None) root.addChild(CommonTree(CommonToken(101))) root.addChild(CommonTree(CommonToken(102))) root.addChild(CommonTree(CommonToken(103))) stream = CommonTreeNodeStream(root) expecting = "101 102 103" found = self.toNodesOnlyString(stream) self.assertEqual(expecting, found) expecting = "101 102 103" found = str(stream) self.assertEqual(expecting, found)
def testIterator(self): r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) expecting = [ 101, DOWN, 102, DOWN, 103, 106, DOWN, 107, UP, UP, 104, 105, UP ] found = [t.type for t in stream] self.assertEqual(expecting, found)
def testList(self): root = CommonTree(None) t = CommonTree(CommonToken(101)) t.addChild(CommonTree(CommonToken(102))) t.getChild(0).addChild(CommonTree(CommonToken(103))) t.addChild(CommonTree(CommonToken(104))) u = CommonTree(CommonToken(105)) root.addChild(t) root.addChild(u) stream = CommonTreeNodeStream(root) expecting = "101 102 103 104 105" found = self.toNodesOnlyString(stream) self.failUnlessEqual(expecting, found) expecting = "101 2 102 2 103 3 104 3 105" found = str(stream) self.failUnlessEqual(expecting, found)
def translate(formula, kind='both', norm=False, optimize=True): '''Converts a TWTL formula into an FSA. It can returns both a normal FSA or the automaton corresponding to the relaxed infinity version of the specification. If kind is: (a) DFAType.Normal it returns only the normal version; (b) DFAType.Infinity it returns only the relaxed version; and (c) 'both' it returns both automata versions. If norm is True then the bounds of the TWTL formula are computed as well. The functions returns a tuple containing in order: (a) the alphabet; (b) the normal automaton (if requested); (c) the infinity version automaton (if requested); and (d) the bounds of the TWTL formula (if requested). The ``optimize'' flag is used to specify that the annotation data should be optimized. Note that the synthesis algorithm assumes an optimized automaton, while computing temporal relaxations is performed using an unoptimized automaton. ''' if kind == 'both': kind = [DFAType.Normal, DFAType.Infinity] elif kind in [DFAType.Normal, DFAType.Infinity]: kind = [kind] else: raise ValueError('DFA type must be either DFAType.Normal, ' + 'DFAType.Infinity or "both"! {} was given!'.format(kind)) lexer = twtlLexer(ANTLRStringStream(formula)) lexer.setAlphabet(set()) tokens = CommonTokenStream(lexer) parser = twtlParser(tokens) phi = parser.formula() # CommonTree t = phi.tree alphabet = lexer.getAlphabet() result= [alphabet] if DFAType.Normal in kind: setDFAType(DFAType.Normal) nodes = CommonTreeNodeStream(t) nodes.setTokenStream(tokens) translator = twtl2dfa(nodes) translator.props = alphabet translator.eval() dfa = translator.getDFA() dfa.kind = DFAType.Normal result.append(dfa) if DFAType.Infinity in kind: setDFAType(DFAType.Infinity) setOptimizationFlag(optimize) nodes = CommonTreeNodeStream(t) nodes.setTokenStream(tokens) translator = twtl2dfa(nodes) translator.props = alphabet translator.eval() dfa_inf = translator.getDFA() dfa_inf.kind = DFAType.Infinity result.append(dfa_inf) if norm: # compute TWTL bound nodes = CommonTreeNodeStream(t) nodes.setTokenStream(tokens) boundEvaluator = bound(nodes) boundEvaluator.eval() result.append(boundEvaluator.getBound()) if logging.getLogger().isEnabledFor(logging.DEBUG): for mode, name in [(DFAType.Normal, 'Normal'), (DFAType.Infinity, 'Infinity')]: if mode not in kind: continue elif mode == DFAType.Normal: pdfa = dfa else: pdfa = dfa_inf logging.debug('[spec] spec: {}'.format(formula)) logging.debug('[spec] mode: {} DFA: {}'.format(name, pdfa)) if mode == DFAType.Infinity: logging.debug('[spec] tree:\n{}'.format(pdfa.tree.pprint())) logging.debug('[spec] No of nodes: {}'.format(pdfa.g.number_of_nodes())) logging.debug('[spec] No of edges: {}'.format(pdfa.g.number_of_edges())) return tuple(result)
def newStream(self, t): """Build new stream; let's us override to test other streams.""" return CommonTreeNodeStream(t)
def testPushPopFromEOF(self): # ^(101 ^(102 103) ^(104 105) ^(106 107) 108 109) # stream has 9 real + 8 nav nodes # Sequence of types: 101 DN 102 DN 103 UP 104 DN 105 UP 106 DN 107 UP 108 109 UP r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r1.addChild(CommonTree(CommonToken(103))) r0.addChild(r1) r2 = CommonTree(CommonToken(104)) r2.addChild(CommonTree(CommonToken(105))) r0.addChild(r2) r3 = CommonTree(CommonToken(106)) r3.addChild(CommonTree(CommonToken(107))) r0.addChild(r3) r0.addChild(CommonTree(CommonToken(108))) r0.addChild(CommonTree(CommonToken(109))) stream = CommonTreeNodeStream(r0) while stream.LA(1) != EOF: stream.consume() indexOf102 = 2 indexOf104 = 6 self.failUnlessEqual(EOF, stream.LT(1).getType()) # CALL 102 stream.push(indexOf102) self.failUnlessEqual(102, stream.LT(1).getType()) stream.consume() # consume 102 self.failUnlessEqual(DOWN, stream.LT(1).getType()) stream.consume() # consume DN self.failUnlessEqual(103, stream.LT(1).getType()) stream.consume() # consume 103 self.failUnlessEqual(UP, stream.LT(1).getType()) # RETURN (to empty stack) stream.pop() self.failUnlessEqual(EOF, stream.LT(1).getType()) # CALL 104 stream.push(indexOf104) self.failUnlessEqual(104, stream.LT(1).getType()) stream.consume() # consume 102 self.failUnlessEqual(DOWN, stream.LT(1).getType()) stream.consume() # consume DN self.failUnlessEqual(105, stream.LT(1).getType()) stream.consume() # consume 103 self.failUnlessEqual(UP, stream.LT(1).getType()) # RETURN (to empty stack) stream.pop() self.failUnlessEqual(EOF, stream.LT(1).getType())
def testNestedPushPop(self): # ^(101 ^(102 103) ^(104 105) ^(106 107) 108 109) # stream has 9 real + 8 nav nodes # Sequence of types: 101 DN 102 DN 103 UP 104 DN 105 UP 106 DN 107 UP 108 109 UP r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r1.addChild(CommonTree(CommonToken(103))) r0.addChild(r1) r2 = CommonTree(CommonToken(104)) r2.addChild(CommonTree(CommonToken(105))) r0.addChild(r2) r3 = CommonTree(CommonToken(106)) r3.addChild(CommonTree(CommonToken(107))) r0.addChild(r3) r0.addChild(CommonTree(CommonToken(108))) r0.addChild(CommonTree(CommonToken(109))) stream = CommonTreeNodeStream(r0) # Assume we want to hit node 107 and then "call 102", which # calls 104, then return indexOf102 = 2 indexOf107 = 12 for _ in range(indexOf107): # consume til 107 node stream.consume() self.failUnlessEqual(107, stream.LT(1).getType()) # CALL 102 stream.push(indexOf102) self.failUnlessEqual(102, stream.LT(1).getType()) stream.consume() # consume 102 self.failUnlessEqual(DOWN, stream.LT(1).getType()) stream.consume() # consume DN self.failUnlessEqual(103, stream.LT(1).getType()) stream.consume() # consume 103 # CALL 104 indexOf104 = 6 stream.push(indexOf104) self.failUnlessEqual(104, stream.LT(1).getType()) stream.consume() # consume 102 self.failUnlessEqual(DOWN, stream.LT(1).getType()) stream.consume() # consume DN self.failUnlessEqual(105, stream.LT(1).getType()) stream.consume() # consume 103 self.failUnlessEqual(UP, stream.LT(1).getType()) # RETURN (to UP node in 102 subtree) stream.pop() self.failUnlessEqual(UP, stream.LT(1).getType()) # RETURN (to empty stack) stream.pop() self.failUnlessEqual(107, stream.LT(1).getType())
def testPushPop(self): # ^(101 ^(102 103) ^(104 105) ^(106 107) 108 109) # stream has 9 real + 8 nav nodes # Sequence of types: 101 DN 102 DN 103 UP 104 DN 105 UP 106 DN 107 UP 108 109 UP r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r1.addChild(CommonTree(CommonToken(103))) r0.addChild(r1) r2 = CommonTree(CommonToken(104)) r2.addChild(CommonTree(CommonToken(105))) r0.addChild(r2) r3 = CommonTree(CommonToken(106)) r3.addChild(CommonTree(CommonToken(107))) r0.addChild(r3) r0.addChild(CommonTree(CommonToken(108))) r0.addChild(CommonTree(CommonToken(109))) stream = CommonTreeNodeStream(r0) expecting = "101 2 102 2 103 3 104 2 105 3 106 2 107 3 108 109 3" found = str(stream) self.failUnlessEqual(expecting, found) # Assume we want to hit node 107 and then "call 102" then return indexOf102 = 2 indexOf107 = 12 for _ in range(indexOf107): # consume til 107 node stream.consume() # CALL 102 self.failUnlessEqual(107, stream.LT(1).getType()) stream.push(indexOf102) self.failUnlessEqual(102, stream.LT(1).getType()) stream.consume() # consume 102 self.failUnlessEqual(DOWN, stream.LT(1).getType()) stream.consume() # consume DN self.failUnlessEqual(103, stream.LT(1).getType()) stream.consume() # consume 103 self.failUnlessEqual(UP, stream.LT(1).getType()) # RETURN stream.pop() self.failUnlessEqual(107, stream.LT(1).getType())
def testMarkRewindInMiddle(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) for _ in range(7): # consume til middle # System.out.println(tream.LT(1).getType()) stream.consume() self.failUnlessEqual(107, stream.LT(1).getType()) m = stream.mark() # MARK stream.consume() # consume 107 stream.consume() # consume UP stream.consume() # consume UP stream.consume() # consume 104 stream.rewind(m) # REWIND self.failUnlessEqual(107, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(UP, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(UP, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(104, stream.LT(1).getType()) stream.consume() # now we're past rewind position self.failUnlessEqual(105, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(UP, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(EOF, stream.LT(1).getType()) self.failUnlessEqual(UP, stream.LT(-1).getType())
def testMarkRewindNested(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) m = stream.mark() # MARK at start stream.consume() # consume 101 stream.consume() # consume DN m2 = stream.mark() # MARK on 102 stream.consume() # consume 102 stream.consume() # consume DN stream.consume() # consume 103 stream.consume() # consume 106 stream.rewind(m2) # REWIND to 102 self.failUnlessEqual(102, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(DOWN, stream.LT(1).getType()) stream.consume() # stop at 103 and rewind to start stream.rewind(m) # REWIND to 101 self.failUnlessEqual(101, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(DOWN, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(102, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(DOWN, stream.LT(1).getType())
def testMarkRewindInMiddle(self): # ^(101 ^(102 103 ^(106 107) ) 104 105) # stream has 7 real + 6 nav nodes # Sequence of types: 101 DN 102 DN 103 106 DN 107 UP UP 104 105 UP EOF r0 = CommonTree(CommonToken(101)) r1 = CommonTree(CommonToken(102)) r0.addChild(r1) r1.addChild(CommonTree(CommonToken(103))) r2 = CommonTree(CommonToken(106)) r2.addChild(CommonTree(CommonToken(107))) r1.addChild(r2) r0.addChild(CommonTree(CommonToken(104))) r0.addChild(CommonTree(CommonToken(105))) stream = CommonTreeNodeStream(r0) for _ in range(7): # consume til middle #System.out.println(tream.LT(1).getType()) stream.consume() self.failUnlessEqual(107, stream.LT(1).getType()) m = stream.mark() # MARK stream.consume() # consume 107 stream.consume() # consume UP stream.consume() # consume UP stream.consume() # consume 104 stream.rewind(m) # REWIND self.failUnlessEqual(107, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(UP, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(UP, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(104, stream.LT(1).getType()) stream.consume() # now we're past rewind position self.failUnlessEqual(105, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(UP, stream.LT(1).getType()) stream.consume() self.failUnlessEqual(EOF, stream.LT(1).getType()) self.failUnlessEqual(UP, stream.LT(-1).getType())
def walk(self, parsedResult): ast = parsedResult.tree; nodes = CommonTreeNodeStream(ast); fsmBuilder = BuildFSM(nodes); fsmBuilder.description() return fsmBuilder