示例#1
0
    def test_crop_image_example(self):
        fi = ants.image_read(ants.get_ants_data('r16'))
        cropped = ants.crop_image(fi)
        cropped = ants.crop_image(fi, fi, 100)

        # image not float type
        cropped = ants.crop_image(fi.clone('unsigned int'))

        # label image not float
        cropped = ants.crop_image(fi, fi.clone('unsigned int'), 100)
示例#2
0
    def test_decrop_image_example(self):
        fi = ants.image_read(ants.get_ants_data('r16'))
        mask = ants.get_mask(fi)
        cropped = ants.crop_image(fi, mask, 1)
        cropped = ants.smooth_image(cropped, 1)
        decropped = ants.decrop_image(cropped, fi)

        # image not float
        cropped = ants.crop_image(fi.clone('unsigned int'), mask, 1)

        # full image not float
        cropped = ants.crop_image(fi, mask.clone('unsigned int'), 1)
示例#3
0
def hippmapp3r_segmentation(t1,
                            do_preprocessing=True,
                            antsxnet_cache_directory=None,
                            verbose=False):
    """
    Perform HippMapp3r (hippocampal) segmentation described in

     https://www.ncbi.nlm.nih.gov/pubmed/31609046

    with models and architecture ported from

    https://github.com/mgoubran/HippMapp3r

    Additional documentation and attribution resources found at

    https://hippmapp3r.readthedocs.io/en/latest/

    Preprocessing consists of:
       * n4 bias correction and
       * brain extraction
    The input T1 should undergo the same steps.  If the input T1 is the raw
    T1, these steps can be performed by the internal preprocessing, i.e. set
    do_preprocessing = True

    Arguments
    ---------
    t1 : ANTsImage
        input image

    do_preprocessing : boolean
        See description above.

    antsxnet_cache_directory : string
        Destination directory for storing the downloaded template and model weights.
        Since these can be resused, if is None, these data will be downloaded to a
        ~/.keras/ANTsXNet/.

    verbose : boolean
        Print progress to the screen.

    Returns
    -------
    ANTs labeled hippocampal image.

    Example
    -------
    >>> mask = hippmapp3r_segmentation(t1)
    """

    from ..architectures import create_hippmapp3r_unet_model_3d
    from ..utilities import preprocess_brain_image
    from ..utilities import get_pretrained_network
    from ..utilities import get_antsxnet_data

    if t1.dimension != 3:
        raise ValueError("Image dimension must be 3.")

    if antsxnet_cache_directory == None:
        antsxnet_cache_directory = "ANTsXNet"

    if verbose == True:
        print("*************  Preprocessing  ***************")
        print("")

    t1_preprocessed = t1
    if do_preprocessing == True:
        t1_preprocessing = preprocess_brain_image(
            t1,
            truncate_intensity=None,
            brain_extraction_modality="t1",
            template=None,
            do_bias_correction=True,
            do_denoising=False,
            antsxnet_cache_directory=antsxnet_cache_directory,
            verbose=verbose)
        t1_preprocessed = t1_preprocessing[
            "preprocessed_image"] * t1_preprocessing['brain_mask']

    if verbose == True:
        print("*************  Initial stage segmentation  ***************")
        print("")

    # Normalize to mprage_hippmapp3r space
    if verbose == True:
        print("    HippMapp3r: template normalization.")

    template_file_name_path = get_antsxnet_data(
        "mprage_hippmapp3r", antsxnet_cache_directory=antsxnet_cache_directory)
    template_image = ants.image_read(template_file_name_path)

    registration = ants.registration(
        fixed=template_image,
        moving=t1_preprocessed,
        type_of_transform="antsRegistrationSyNQuickRepro[t]",
        verbose=verbose)
    image = registration['warpedmovout']
    transforms = dict(fwdtransforms=registration['fwdtransforms'],
                      invtransforms=registration['invtransforms'])

    # Threshold at 10th percentile of non-zero voxels in "robust range (fslmaths)"
    if verbose == True:
        print("    HippMapp3r: threshold.")

    image_array = image.numpy()
    image_robust_range = np.quantile(image_array[np.where(image_array != 0)],
                                     (0.02, 0.98))
    threshold_value = 0.10 * (image_robust_range[1] -
                              image_robust_range[0]) + image_robust_range[0]
    thresholded_mask = ants.threshold_image(image, -10000, threshold_value, 0,
                                            1)
    thresholded_image = image * thresholded_mask

    # Standardize image
    if verbose == True:
        print("    HippMapp3r: standardize.")

    mean_image = np.mean(thresholded_image[thresholded_mask == 1])
    sd_image = np.std(thresholded_image[thresholded_mask == 1])
    image_normalized = (image - mean_image) / sd_image
    image_normalized = image_normalized * thresholded_mask

    # Trim and resample image
    if verbose == True:
        print("    HippMapp3r: trim and resample to (160, 160, 128).")

    image_cropped = ants.crop_image(image_normalized, thresholded_mask, 1)
    shape_initial_stage = (160, 160, 128)
    image_resampled = ants.resample_image(image_cropped,
                                          shape_initial_stage,
                                          use_voxels=True,
                                          interp_type=1)

    if verbose == True:
        print("    HippMapp3r: generate first network and download weights.")

    model_initial_stage = create_hippmapp3r_unet_model_3d(
        (*shape_initial_stage, 1), do_first_network=True)

    initial_stage_weights_file_name = get_pretrained_network(
        "hippMapp3rInitial", antsxnet_cache_directory=antsxnet_cache_directory)
    model_initial_stage.load_weights(initial_stage_weights_file_name)

    if verbose == True:
        print("    HippMapp3r: prediction.")

    data_initial_stage = np.expand_dims(image_resampled.numpy(), axis=0)
    data_initial_stage = np.expand_dims(data_initial_stage, axis=-1)
    mask_array = model_initial_stage.predict(data_initial_stage,
                                             verbose=verbose)
    mask_image_resampled = ants.copy_image_info(
        image_resampled, ants.from_numpy(np.squeeze(mask_array)))
    mask_image = ants.resample_image(mask_image_resampled,
                                     image.shape,
                                     use_voxels=True,
                                     interp_type=0)
    mask_image[mask_image >= 0.5] = 1
    mask_image[mask_image < 0.5] = 0

    #########################################
    #
    # Perform refined (stage 2) segmentation
    #

    if verbose == True:
        print("")
        print("")
        print("*************  Refine stage segmentation  ***************")
        print("")

    mask_array = np.squeeze(mask_array)
    centroid_indices = np.where(mask_array == 1)
    centroid = np.zeros((3, ))
    centroid[0] = centroid_indices[0].mean()
    centroid[1] = centroid_indices[1].mean()
    centroid[2] = centroid_indices[2].mean()

    shape_refine_stage = (112, 112, 64)
    lower = (np.floor(centroid - 0.5 * np.array(shape_refine_stage)) -
             1).astype(int)
    upper = (lower + np.array(shape_refine_stage)).astype(int)

    image_trimmed = ants.crop_indices(image_resampled, lower.astype(int),
                                      upper.astype(int))

    if verbose == True:
        print("    HippMapp3r: generate second network and download weights.")

    model_refine_stage = create_hippmapp3r_unet_model_3d(
        (*shape_refine_stage, 1), do_first_network=False)

    refine_stage_weights_file_name = get_pretrained_network(
        "hippMapp3rRefine", antsxnet_cache_directory=antsxnet_cache_directory)
    model_refine_stage.load_weights(refine_stage_weights_file_name)

    data_refine_stage = np.expand_dims(image_trimmed.numpy(), axis=0)
    data_refine_stage = np.expand_dims(data_refine_stage, axis=-1)

    if verbose == True:
        print("    HippMapp3r: Monte Carlo iterations (SpatialDropout).")

    number_of_mci_iterations = 30
    prediction_refine_stage = np.zeros(shape_refine_stage)
    for i in range(number_of_mci_iterations):
        tf.random.set_seed(i)
        if verbose == True:
            print("        Monte Carlo iteration", i + 1, "out of",
                  number_of_mci_iterations)
        prediction_refine_stage = \
            (np.squeeze(model_refine_stage.predict(data_refine_stage, verbose=verbose)) + \
             i * prediction_refine_stage ) / (i + 1)

    prediction_refine_stage_array = np.zeros(image_resampled.shape)
    prediction_refine_stage_array[lower[0]:upper[0], lower[1]:upper[1],
                                  lower[2]:upper[2]] = prediction_refine_stage
    probability_mask_refine_stage_resampled = ants.copy_image_info(
        image_resampled, ants.from_numpy(prediction_refine_stage_array))

    segmentation_image_resampled = ants.label_clusters(ants.threshold_image(
        probability_mask_refine_stage_resampled, 0.0, 0.5, 0, 1),
                                                       min_cluster_size=10)
    segmentation_image_resampled[segmentation_image_resampled > 2] = 0
    geom = ants.label_geometry_measures(segmentation_image_resampled)
    if len(geom['VolumeInMillimeters']) < 2:
        raise ValueError("Error: left and right hippocampus not found.")

    if geom['Centroid_x'][0] < geom['Centroid_x'][1]:
        segmentation_image_resampled[segmentation_image_resampled == 1] = 3
        segmentation_image_resampled[segmentation_image_resampled == 2] = 1
        segmentation_image_resampled[segmentation_image_resampled == 3] = 2

    segmentation_image = ants.apply_transforms(
        fixed=t1,
        moving=segmentation_image_resampled,
        transformlist=transforms['invtransforms'],
        whichtoinvert=[True],
        interpolator="genericLabel",
        verbose=verbose)

    return (segmentation_image)
示例#4
0
def sysu_media_wmh_segmentation(flair,
                                t1=None,
                                use_ensemble=True,
                                antsxnet_cache_directory=None,
                                verbose=False):
    """
    Perform WMH segmentation using the winning submission in the MICCAI
    2017 challenge by the sysu_media team using FLAIR or T1/FLAIR.  The
    MICCAI challenge is discussed in

    https://pubmed.ncbi.nlm.nih.gov/30908194/

    with the sysu_media's team entry is discussed in

     https://pubmed.ncbi.nlm.nih.gov/30125711/

    with the original implementation available here:

    https://github.com/hongweilibran/wmh_ibbmTum

    The original implementation used global thresholding as a quick
    brain extraction approach.  Due to possible generalization difficulties,
    we leave such post-processing steps to the user.  For brain or white
    matter masking see functions brain_extraction or deep_atropos,
    respectively.

    Arguments
    ---------
    flair : ANTsImage
        input 3-D FLAIR brain image (not skull-stripped).

    t1 : ANTsImage
        input 3-D T1 brain image (not skull-stripped).

    use_ensemble : boolean
        check whether to use all 3 sets of weights.

    antsxnet_cache_directory : string
        Destination directory for storing the downloaded template and model weights.
        Since these can be resused, if is None, these data will be downloaded to a
        ~/.keras/ANTsXNet/.

    verbose : boolean
        Print progress to the screen.

    Returns
    -------
    WMH segmentation probability image

    Example
    -------
    >>> image = ants.image_read("flair.nii.gz")
    >>> probability_mask = sysu_media_wmh_segmentation(image)
    """

    from ..architectures import create_sysu_media_unet_model_2d
    from ..utilities import get_pretrained_network
    from ..utilities import pad_or_crop_image_to_size
    from ..utilities import preprocess_brain_image
    from ..utilities import binary_dice_coefficient

    if flair.dimension != 3:
        raise ValueError("Image dimension must be 3.")

    if antsxnet_cache_directory == None:
        antsxnet_cache_directory = "ANTsXNet"

    image_size = (200, 200)

    ################################
    #
    # Preprocess images
    #
    ################################

    def closest_simplified_direction_matrix(direction):
        closest = (np.abs(direction) + 0.5).astype(int).astype(float)
        closest[direction < 0] *= -1.0
        return closest

    simplified_direction = closest_simplified_direction_matrix(flair.direction)

    flair_preprocessing = preprocess_brain_image(
        flair,
        truncate_intensity=None,
        brain_extraction_modality=None,
        do_bias_correction=False,
        do_denoising=False,
        antsxnet_cache_directory=antsxnet_cache_directory,
        verbose=verbose)
    flair_preprocessed = flair_preprocessing["preprocessed_image"]
    flair_preprocessed.set_direction(simplified_direction)
    flair_preprocessed.set_origin((0, 0, 0))
    flair_preprocessed.set_spacing((1, 1, 1))
    number_of_channels = 1

    t1_preprocessed = None
    if t1 is not None:
        t1_preprocessing = preprocess_brain_image(
            t1,
            truncate_intensity=None,
            brain_extraction_modality=None,
            do_bias_correction=False,
            do_denoising=False,
            antsxnet_cache_directory=antsxnet_cache_directory,
            verbose=verbose)
        t1_preprocessed = t1_preprocessing["preprocessed_image"]
        t1_preprocessed.set_direction(simplified_direction)
        t1_preprocessed.set_origin((0, 0, 0))
        t1_preprocessed.set_spacing((1, 1, 1))
        number_of_channels = 2

    ################################
    #
    # Reorient images
    #
    ################################

    reference_image = ants.make_image((256, 256, 256),
                                      voxval=0,
                                      spacing=(1, 1, 1),
                                      origin=(0, 0, 0),
                                      direction=np.identity(3))
    center_of_mass_reference = np.floor(
        ants.get_center_of_mass(reference_image * 0 + 1))
    center_of_mass_image = np.floor(
        ants.get_center_of_mass(flair_preprocessed))
    translation = np.asarray(center_of_mass_image) - np.asarray(
        center_of_mass_reference)
    xfrm = ants.create_ants_transform(
        transform_type="Euler3DTransform",
        center=np.asarray(center_of_mass_reference),
        translation=translation)
    flair_preprocessed_warped = ants.apply_ants_transform_to_image(
        xfrm,
        flair_preprocessed,
        reference_image,
        interpolation="nearestneighbor")
    crop_image = ants.image_clone(flair_preprocessed) * 0 + 1
    crop_image_warped = ants.apply_ants_transform_to_image(
        xfrm, crop_image, reference_image, interpolation="nearestneighbor")
    flair_preprocessed_warped = ants.crop_image(flair_preprocessed_warped,
                                                crop_image_warped, 1)

    if t1 is not None:
        t1_preprocessed_warped = ants.apply_ants_transform_to_image(
            xfrm,
            t1_preprocessed,
            reference_image,
            interpolation="nearestneighbor")
        t1_preprocessed_warped = ants.crop_image(t1_preprocessed_warped,
                                                 crop_image_warped, 1)

    ################################
    #
    # Gaussian normalize intensity
    #
    ################################

    mean_flair = flair_preprocessed.mean()
    std_flair = flair_preprocessed.std()
    if number_of_channels == 2:
        mean_t1 = t1_preprocessed.mean()
        std_t1 = t1_preprocessed.std()

    flair_preprocessed_warped = (flair_preprocessed_warped -
                                 mean_flair) / std_flair
    if number_of_channels == 2:
        t1_preprocessed_warped = (t1_preprocessed_warped - mean_t1) / std_t1

    ################################
    #
    # Build models and load weights
    #
    ################################

    number_of_models = 1
    if use_ensemble == True:
        number_of_models = 3

    if verbose == True:
        print("White matter hyperintensity:  retrieving model weights.")

    unet_models = list()
    for i in range(number_of_models):
        if number_of_channels == 1:
            weights_file_name = get_pretrained_network(
                "sysuMediaWmhFlairOnlyModel" + str(i),
                antsxnet_cache_directory=antsxnet_cache_directory)
        else:
            weights_file_name = get_pretrained_network(
                "sysuMediaWmhFlairT1Model" + str(i),
                antsxnet_cache_directory=antsxnet_cache_directory)
        unet_model = create_sysu_media_unet_model_2d(
            (*image_size, number_of_channels))
        unet_loss = binary_dice_coefficient(smoothing_factor=1.)
        unet_model.compile(optimizer=keras.optimizers.Adam(learning_rate=2e-4),
                           loss=unet_loss)
        unet_model.load_weights(weights_file_name)
        unet_models.append(unet_model)

    ################################
    #
    # Extract slices
    #
    ################################

    dimensions_to_predict = [2]

    total_number_of_slices = 0
    for d in range(len(dimensions_to_predict)):
        total_number_of_slices += flair_preprocessed_warped.shape[
            dimensions_to_predict[d]]

    batchX = np.zeros(
        (total_number_of_slices, *image_size, number_of_channels))

    slice_count = 0
    for d in range(len(dimensions_to_predict)):
        number_of_slices = flair_preprocessed_warped.shape[
            dimensions_to_predict[d]]

        if verbose == True:
            print("Extracting slices for dimension ", dimensions_to_predict[d],
                  ".")

        for i in range(number_of_slices):
            flair_slice = pad_or_crop_image_to_size(
                ants.slice_image(flair_preprocessed_warped,
                                 dimensions_to_predict[d], i), image_size)
            batchX[slice_count, :, :, 0] = flair_slice.numpy()
            if number_of_channels == 2:
                t1_slice = pad_or_crop_image_to_size(
                    ants.slice_image(t1_preprocessed_warped,
                                     dimensions_to_predict[d], i), image_size)
                batchX[slice_count, :, :, 1] = t1_slice.numpy()
            slice_count += 1

    ################################
    #
    # Do prediction and then restack into the image
    #
    ################################

    if verbose == True:
        print("Prediction.")

    prediction = unet_models[0].predict(np.transpose(batchX,
                                                     axes=(0, 2, 1, 3)),
                                        verbose=verbose)
    if number_of_models > 1:
        for i in range(1, number_of_models, 1):
            prediction += unet_models[i].predict(np.transpose(batchX,
                                                              axes=(0, 2, 1,
                                                                    3)),
                                                 verbose=verbose)
    prediction /= number_of_models
    prediction = np.transpose(prediction, axes=(0, 2, 1, 3))

    permutations = list()
    permutations.append((0, 1, 2))
    permutations.append((1, 0, 2))
    permutations.append((1, 2, 0))

    prediction_image_average = ants.image_clone(flair_preprocessed_warped) * 0

    current_start_slice = 0
    for d in range(len(dimensions_to_predict)):
        current_end_slice = current_start_slice + flair_preprocessed_warped.shape[
            dimensions_to_predict[d]]
        which_batch_slices = range(current_start_slice, current_end_slice)
        prediction_per_dimension = prediction[which_batch_slices, :, :, :]
        prediction_array = np.transpose(np.squeeze(prediction_per_dimension),
                                        permutations[dimensions_to_predict[d]])
        prediction_image = ants.copy_image_info(
            flair_preprocessed_warped,
            pad_or_crop_image_to_size(ants.from_numpy(prediction_array),
                                      flair_preprocessed_warped.shape))
        prediction_image_average = prediction_image_average + (
            prediction_image - prediction_image_average) / (d + 1)
        current_start_slice = current_end_slice

    probability_image = ants.apply_ants_transform_to_image(
        ants.invert_ants_transform(xfrm), prediction_image_average,
        flair_preprocessed)
    probability_image = ants.copy_image_info(flair, probability_image)

    return (probability_image)
translation = np.asarray(center_of_mass_image) - np.asarray(
    center_of_mass_template)
xfrm = ants.create_ants_transform(transform_type="Euler3DTransform",
                                  center=np.asarray(center_of_mass_template),
                                  translation=translation)
warped_image = ants.apply_ants_transform_to_image(xfrm,
                                                  image,
                                                  reorient_template,
                                                  interpolation='linear')
warped_mask = ants.apply_ants_transform_to_image(xfrm,
                                                 mask,
                                                 reorient_template,
                                                 interpolation='linear')
warped_mask = ants.threshold_image(warped_mask, 0.4999, 1.0001, 1, 0)
warped_mask = ants.iMath(warped_mask, "MD", 3)
warped_cropped_image = ants.crop_image(warped_image, warped_mask, 1)
original_cropped_size = warped_cropped_image.shape
warped_cropped_image = ants.resample_image(warped_cropped_image,
                                           resampled_image_size,
                                           use_voxels=True)
end_time = time.time()
elapsed_time = end_time - start_time
print("  (elapsed time: ", elapsed_time, " seconds)")

batchX = np.expand_dims(warped_cropped_image.numpy(), axis=0)
batchX = np.expand_dims(batchX, axis=-1)
batchX = (batchX - batchX.mean()) / batchX.std()

print("Prediction and decoding")
start_time = time.time()
predicted_data = unet_model.predict(batchX, verbose=0)