def test_ndimage_to_list(self): image = ants.image_read(ants.get_ants_data('r16')) image2 = ants.image_read(ants.get_ants_data('r64')) ants.set_spacing(image, (2, 2)) ants.set_spacing(image2, (2, 2)) imageTar = ants.make_image((*image2.shape, 2)) ants.set_spacing(imageTar, (2, 2, 2)) image3 = ants.list_to_ndimage(imageTar, [image, image2]) self.assertEqual(image3.dimension, 3) ants.set_direction(image3, np.eye(3) * 2) images_unmerged = ants.ndimage_to_list(image3) self.assertEqual(len(images_unmerged), 2) self.assertEqual(images_unmerged[0].dimension, 2)
def lung_extraction(image, modality="proton", antsxnet_cache_directory=None, verbose=False): """ Perform proton or ct lung extraction using U-net. Arguments --------- image : ANTsImage input image modality : string Modality image type. Options include "ct", "proton", "protonLobes", "maskLobes", and "ventilation". antsxnet_cache_directory : string Destination directory for storing the downloaded template and model weights. Since these can be resused, if is None, these data will be downloaded to a ~/.keras/ANTsXNet/. verbose : boolean Print progress to the screen. Returns ------- Dictionary of ANTs segmentation and probability images. Example ------- >>> output = lung_extraction(lung_image, modality="proton") """ from ..architectures import create_unet_model_2d from ..architectures import create_unet_model_3d from ..utilities import get_pretrained_network from ..utilities import get_antsxnet_data from ..utilities import pad_or_crop_image_to_size if image.dimension != 3: raise ValueError( "Image dimension must be 3." ) if antsxnet_cache_directory == None: antsxnet_cache_directory = "ANTsXNet" image_mods = [modality] channel_size = len(image_mods) weights_file_name = None unet_model = None if modality == "proton": weights_file_name = get_pretrained_network("protonLungMri", antsxnet_cache_directory=antsxnet_cache_directory) classes = ("background", "left_lung", "right_lung") number_of_classification_labels = len(classes) reorient_template_file_name_path = get_antsxnet_data("protonLungTemplate", antsxnet_cache_directory=antsxnet_cache_directory) reorient_template = ants.image_read(reorient_template_file_name_path) resampled_image_size = reorient_template.shape unet_model = create_unet_model_3d((*resampled_image_size, channel_size), number_of_outputs=number_of_classification_labels, number_of_layers=4, number_of_filters_at_base_layer=16, dropout_rate=0.0, convolution_kernel_size=(7, 7, 5), deconvolution_kernel_size=(7, 7, 5)) unet_model.load_weights(weights_file_name) if verbose == True: print("Lung extraction: normalizing image to the template.") center_of_mass_template = ants.get_center_of_mass(reorient_template * 0 + 1) center_of_mass_image = ants.get_center_of_mass(image * 0 + 1) translation = np.asarray(center_of_mass_image) - np.asarray(center_of_mass_template) xfrm = ants.create_ants_transform(transform_type="Euler3DTransform", center=np.asarray(center_of_mass_template), translation=translation) warped_image = ants.apply_ants_transform_to_image(xfrm, image, reorient_template) batchX = np.expand_dims(warped_image.numpy(), axis=0) batchX = np.expand_dims(batchX, axis=-1) batchX = (batchX - batchX.mean()) / batchX.std() predicted_data = unet_model.predict(batchX, verbose=int(verbose)) origin = warped_image.origin spacing = warped_image.spacing direction = warped_image.direction probability_images_array = list() for i in range(number_of_classification_labels): probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, i]), origin=origin, spacing=spacing, direction=direction)) if verbose == True: print("Lung extraction: renormalize probability mask to native space.") for i in range(number_of_classification_labels): probability_images_array[i] = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_images_array[i], image) image_matrix = ants.image_list_to_matrix(probability_images_array, image * 0 + 1) segmentation_matrix = np.argmax(image_matrix, axis=0) segmentation_image = ants.matrix_to_images( np.expand_dims(segmentation_matrix, axis=0), image * 0 + 1)[0] return_dict = {'segmentation_image' : segmentation_image, 'probability_images' : probability_images_array} return(return_dict) if modality == "protonLobes" or modality == "maskLobes": reorient_template_file_name_path = get_antsxnet_data("protonLungTemplate", antsxnet_cache_directory=antsxnet_cache_directory) reorient_template = ants.image_read(reorient_template_file_name_path) resampled_image_size = reorient_template.shape spatial_priors_file_name_path = get_antsxnet_data("protonLobePriors", antsxnet_cache_directory=antsxnet_cache_directory) spatial_priors = ants.image_read(spatial_priors_file_name_path) priors_image_list = ants.ndimage_to_list(spatial_priors) channel_size = 1 + len(priors_image_list) number_of_classification_labels = 1 + len(priors_image_list) unet_model = create_unet_model_3d((*resampled_image_size, channel_size), number_of_outputs=number_of_classification_labels, mode="classification", number_of_filters_at_base_layer=16, number_of_layers=4, convolution_kernel_size=(3, 3, 3), deconvolution_kernel_size=(2, 2, 2), dropout_rate=0.0, weight_decay=0, additional_options=("attentionGating",)) if modality == "protonLobes": penultimate_layer = unet_model.layers[-2].output outputs2 = Conv3D(filters=1, kernel_size=(1, 1, 1), activation='sigmoid', kernel_regularizer=regularizers.l2(0.0))(penultimate_layer) unet_model = Model(inputs=unet_model.input, outputs=[unet_model.output, outputs2]) weights_file_name = get_pretrained_network("protonLobes", antsxnet_cache_directory=antsxnet_cache_directory) else: weights_file_name = get_pretrained_network("maskLobes", antsxnet_cache_directory=antsxnet_cache_directory) unet_model.load_weights(weights_file_name) if verbose == True: print("Lung extraction: normalizing image to the template.") center_of_mass_template = ants.get_center_of_mass(reorient_template * 0 + 1) center_of_mass_image = ants.get_center_of_mass(image * 0 + 1) translation = np.asarray(center_of_mass_image) - np.asarray(center_of_mass_template) xfrm = ants.create_ants_transform(transform_type="Euler3DTransform", center=np.asarray(center_of_mass_template), translation=translation) warped_image = ants.apply_ants_transform_to_image(xfrm, image, reorient_template) warped_array = warped_image.numpy() if modality == "protonLobes": warped_array = (warped_array - warped_array.mean()) / warped_array.std() else: warped_array[warped_array != 0] = 1 batchX = np.zeros((1, *warped_array.shape, channel_size)) batchX[0,:,:,:,0] = warped_array for i in range(len(priors_image_list)): batchX[0,:,:,:,i+1] = priors_image_list[i].numpy() predicted_data = unet_model.predict(batchX, verbose=int(verbose)) origin = warped_image.origin spacing = warped_image.spacing direction = warped_image.direction probability_images_array = list() for i in range(number_of_classification_labels): if modality == "protonLobes": probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0][0, :, :, :, i]), origin=origin, spacing=spacing, direction=direction)) else: probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, i]), origin=origin, spacing=spacing, direction=direction)) if verbose == True: print("Lung extraction: renormalize probability images to native space.") for i in range(number_of_classification_labels): probability_images_array[i] = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_images_array[i], image) image_matrix = ants.image_list_to_matrix(probability_images_array, image * 0 + 1) segmentation_matrix = np.argmax(image_matrix, axis=0) segmentation_image = ants.matrix_to_images( np.expand_dims(segmentation_matrix, axis=0), image * 0 + 1)[0] if modality == "protonLobes": whole_lung_mask = ants.from_numpy(np.squeeze(predicted_data[1][0, :, :, :, 0]), origin=origin, spacing=spacing, direction=direction) whole_lung_mask = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), whole_lung_mask, image) return_dict = {'segmentation_image' : segmentation_image, 'probability_images' : probability_images_array, 'whole_lung_mask_image' : whole_lung_mask} return(return_dict) else: return_dict = {'segmentation_image' : segmentation_image, 'probability_images' : probability_images_array} return(return_dict) elif modality == "ct": ################################ # # Preprocess image # ################################ if verbose == True: print("Preprocess CT image.") def closest_simplified_direction_matrix(direction): closest = np.floor(np.abs(direction) + 0.5) closest[direction < 0] *= -1.0 return closest simplified_direction = closest_simplified_direction_matrix(image.direction) reference_image_size = (128, 128, 128) ct_preprocessed = ants.resample_image(image, reference_image_size, use_voxels=True, interp_type=0) ct_preprocessed[ct_preprocessed < -1000] = -1000 ct_preprocessed[ct_preprocessed > 400] = 400 ct_preprocessed.set_direction(simplified_direction) ct_preprocessed.set_origin((0, 0, 0)) ct_preprocessed.set_spacing((1, 1, 1)) ################################ # # Reorient image # ################################ reference_image = ants.make_image(reference_image_size, voxval=0, spacing=(1, 1, 1), origin=(0, 0, 0), direction=np.identity(3)) center_of_mass_reference = np.floor(ants.get_center_of_mass(reference_image * 0 + 1)) center_of_mass_image = np.floor(ants.get_center_of_mass(ct_preprocessed * 0 + 1)) translation = np.asarray(center_of_mass_image) - np.asarray(center_of_mass_reference) xfrm = ants.create_ants_transform(transform_type="Euler3DTransform", center=np.asarray(center_of_mass_reference), translation=translation) ct_preprocessed = ((ct_preprocessed - ct_preprocessed.min()) / (ct_preprocessed.max() - ct_preprocessed.min())) ct_preprocessed_warped = ants.apply_ants_transform_to_image( xfrm, ct_preprocessed, reference_image, interpolation="nearestneighbor") ct_preprocessed_warped = ((ct_preprocessed_warped - ct_preprocessed_warped.min()) / (ct_preprocessed_warped.max() - ct_preprocessed_warped.min())) - 0.5 ################################ # # Build models and load weights # ################################ if verbose == True: print("Build model and load weights.") weights_file_name = get_pretrained_network("lungCtWithPriorsSegmentationWeights", antsxnet_cache_directory=antsxnet_cache_directory) classes = ("background", "left lung", "right lung", "airways") number_of_classification_labels = len(classes) luna16_priors = ants.ndimage_to_list(ants.image_read(get_antsxnet_data("luna16LungPriors"))) for i in range(len(luna16_priors)): luna16_priors[i] = ants.resample_image(luna16_priors[i], reference_image_size, use_voxels=True) channel_size = len(luna16_priors) + 1 unet_model = create_unet_model_3d((*reference_image_size, channel_size), number_of_outputs=number_of_classification_labels, mode="classification", number_of_layers=4, number_of_filters_at_base_layer=16, dropout_rate=0.0, convolution_kernel_size=(3, 3, 3), deconvolution_kernel_size=(2, 2, 2), weight_decay=1e-5, additional_options=("attentionGating",)) unet_model.load_weights(weights_file_name) ################################ # # Do prediction and normalize to native space # ################################ if verbose == True: print("Prediction.") batchX = np.zeros((1, *reference_image_size, channel_size)) batchX[:,:,:,:,0] = ct_preprocessed_warped.numpy() for i in range(len(luna16_priors)): batchX[:,:,:,:,i+1] = luna16_priors[i].numpy() - 0.5 predicted_data = unet_model.predict(batchX, verbose=verbose) probability_images = list() for i in range(number_of_classification_labels): if verbose == True: print("Reconstructing image", classes[i]) probability_image = ants.from_numpy(np.squeeze(predicted_data[:,:,:,:,i]), origin=ct_preprocessed_warped.origin, spacing=ct_preprocessed_warped.spacing, direction=ct_preprocessed_warped.direction) probability_image = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_image, ct_preprocessed) probability_image = ants.resample_image(probability_image, resample_params=image.shape, use_voxels=True, interp_type=0) probability_image = ants.copy_image_info(image, probability_image) probability_images.append(probability_image) image_matrix = ants.image_list_to_matrix(probability_images, image * 0 + 1) segmentation_matrix = np.argmax(image_matrix, axis=0) segmentation_image = ants.matrix_to_images( np.expand_dims(segmentation_matrix, axis=0), image * 0 + 1)[0] return_dict = {'segmentation_image' : segmentation_image, 'probability_images' : probability_images} return(return_dict) elif modality == "ventilation": ################################ # # Preprocess image # ################################ if verbose == True: print("Preprocess ventilation image.") template_size = (256, 256) image_modalities = ("Ventilation",) channel_size = len(image_modalities) preprocessed_image = (image - image.mean()) / image.std() ants.set_direction(preprocessed_image, np.identity(3)) ################################ # # Build models and load weights # ################################ unet_model = create_unet_model_2d((*template_size, channel_size), number_of_outputs=1, mode='sigmoid', number_of_layers=4, number_of_filters_at_base_layer=32, dropout_rate=0.0, convolution_kernel_size=(3, 3), deconvolution_kernel_size=(2, 2), weight_decay=0) if verbose == True: print("Whole lung mask: retrieving model weights.") weights_file_name = get_pretrained_network("wholeLungMaskFromVentilation", antsxnet_cache_directory=antsxnet_cache_directory) unet_model.load_weights(weights_file_name) ################################ # # Extract slices # ################################ spacing = ants.get_spacing(preprocessed_image) dimensions_to_predict = (spacing.index(max(spacing)),) total_number_of_slices = 0 for d in range(len(dimensions_to_predict)): total_number_of_slices += preprocessed_image.shape[dimensions_to_predict[d]] batchX = np.zeros((total_number_of_slices, *template_size, channel_size)) slice_count = 0 for d in range(len(dimensions_to_predict)): number_of_slices = preprocessed_image.shape[dimensions_to_predict[d]] if verbose == True: print("Extracting slices for dimension ", dimensions_to_predict[d], ".") for i in range(number_of_slices): ventilation_slice = pad_or_crop_image_to_size(ants.slice_image(preprocessed_image, dimensions_to_predict[d], i), template_size) batchX[slice_count,:,:,0] = ventilation_slice.numpy() slice_count += 1 ################################ # # Do prediction and then restack into the image # ################################ if verbose == True: print("Prediction.") prediction = unet_model.predict(batchX, verbose=verbose) permutations = list() permutations.append((0, 1, 2)) permutations.append((1, 0, 2)) permutations.append((1, 2, 0)) probability_image = ants.image_clone(image) * 0 current_start_slice = 0 for d in range(len(dimensions_to_predict)): current_end_slice = current_start_slice + preprocessed_image.shape[dimensions_to_predict[d]] - 1 which_batch_slices = range(current_start_slice, current_end_slice) prediction_per_dimension = prediction[which_batch_slices,:,:,0] prediction_array = np.transpose(np.squeeze(prediction_per_dimension), permutations[dimensions_to_predict[d]]) prediction_image = ants.copy_image_info(image, pad_or_crop_image_to_size(ants.from_numpy(prediction_array), image.shape)) probability_image = probability_image + (prediction_image - probability_image) / (d + 1) current_start_slice = current_end_slice + 1 return(probability_image) else: return ValueError("Unrecognized modality.")
def el_bicho(ventilation_image, mask, use_coarse_slices_only=True, antsxnet_cache_directory=None, verbose=False): """ Perform functional lung segmentation using hyperpolarized gases. https://pubmed.ncbi.nlm.nih.gov/30195415/ Arguments --------- ventilation_image : ANTsImage input ventilation image. mask : ANTsImage input mask. use_coarse_slices_only : boolean If True, apply network only in the dimension of greatest slice thickness. If False, apply to all dimensions and average the results. antsxnet_cache_directory : string Destination directory for storing the downloaded template and model weights. Since these can be resused, if is None, these data will be downloaded to a ~/.keras/ANTsXNet/. verbose : boolean Print progress to the screen. Returns ------- Ventilation segmentation and corresponding probability images Example ------- >>> image = ants.image_read("ventilation.nii.gz") >>> mask = ants.image_read("mask.nii.gz") >>> lung_seg = el_bicho(image, mask, use_coarse_slices=True, verbose=False) """ from ..architectures import create_unet_model_2d from ..utilities import get_pretrained_network from ..utilities import pad_or_crop_image_to_size if ventilation_image.dimension != 3: raise ValueError("Image dimension must be 3.") if ventilation_image.shape != mask.shape: raise ValueError( "Ventilation image and mask size are not the same size.") if antsxnet_cache_directory == None: antsxnet_cache_directory = "ANTsXNet" ################################ # # Preprocess image # ################################ template_size = (256, 256) classes = (0, 1, 2, 3, 4) number_of_classification_labels = len(classes) image_modalities = ("Ventilation", "Mask") channel_size = len(image_modalities) preprocessed_image = (ventilation_image - ventilation_image.mean()) / ventilation_image.std() ants.set_direction(preprocessed_image, np.identity(3)) mask_identity = ants.image_clone(mask) ants.set_direction(mask_identity, np.identity(3)) ################################ # # Build models and load weights # ################################ unet_model = create_unet_model_2d( (*template_size, channel_size), number_of_outputs=number_of_classification_labels, number_of_layers=4, number_of_filters_at_base_layer=32, dropout_rate=0.0, convolution_kernel_size=(3, 3), deconvolution_kernel_size=(2, 2), weight_decay=1e-5, additional_options=("attentionGating")) if verbose == True: print("El Bicho: retrieving model weights.") weights_file_name = get_pretrained_network( "elBicho", antsxnet_cache_directory=antsxnet_cache_directory) unet_model.load_weights(weights_file_name) ################################ # # Extract slices # ################################ spacing = ants.get_spacing(preprocessed_image) dimensions_to_predict = (spacing.index(max(spacing)), ) if use_coarse_slices_only == False: dimensions_to_predict = list(range(3)) total_number_of_slices = 0 for d in range(len(dimensions_to_predict)): total_number_of_slices += preprocessed_image.shape[ dimensions_to_predict[d]] batchX = np.zeros((total_number_of_slices, *template_size, channel_size)) slice_count = 0 for d in range(len(dimensions_to_predict)): number_of_slices = preprocessed_image.shape[dimensions_to_predict[d]] if verbose == True: print("Extracting slices for dimension ", dimensions_to_predict[d], ".") for i in range(number_of_slices): ventilation_slice = pad_or_crop_image_to_size( ants.slice_image(preprocessed_image, dimensions_to_predict[d], i), template_size) batchX[slice_count, :, :, 0] = ventilation_slice.numpy() mask_slice = pad_or_crop_image_to_size( ants.slice_image(mask_identity, dimensions_to_predict[d], i), template_size) batchX[slice_count, :, :, 1] = mask_slice.numpy() slice_count += 1 ################################ # # Do prediction and then restack into the image # ################################ if verbose == True: print("Prediction.") prediction = unet_model.predict(batchX, verbose=verbose) permutations = list() permutations.append((0, 1, 2)) permutations.append((1, 0, 2)) permutations.append((1, 2, 0)) probability_images = list() for l in range(number_of_classification_labels): probability_images.append(ants.image_clone(mask) * 0) current_start_slice = 0 for d in range(len(dimensions_to_predict)): current_end_slice = current_start_slice + preprocessed_image.shape[ dimensions_to_predict[d]] - 1 which_batch_slices = range(current_start_slice, current_end_slice) for l in range(number_of_classification_labels): prediction_per_dimension = prediction[which_batch_slices, :, :, l] prediction_array = np.transpose( np.squeeze(prediction_per_dimension), permutations[dimensions_to_predict[d]]) prediction_image = ants.copy_image_info( ventilation_image, pad_or_crop_image_to_size(ants.from_numpy(prediction_array), ventilation_image.shape)) probability_images[l] = probability_images[l] + ( prediction_image - probability_images[l]) / (d + 1) current_start_slice = current_end_slice + 1 ################################ # # Convert probability images to segmentation # ################################ image_matrix = ants.image_list_to_matrix( probability_images[1:(len(probability_images))], mask * 0 + 1) background_foreground_matrix = np.stack([ ants.image_list_to_matrix([probability_images[0]], mask * 0 + 1), np.expand_dims(np.sum(image_matrix, axis=0), axis=0) ]) foreground_matrix = np.argmax(background_foreground_matrix, axis=0) segmentation_matrix = (np.argmax(image_matrix, axis=0) + 1) * foreground_matrix segmentation_image = ants.matrix_to_images( np.expand_dims(segmentation_matrix, axis=0), mask * 0 + 1)[0] return_dict = { 'segmentation_image': segmentation_image, 'probability_images': probability_images } return (return_dict)
def test_set_direction(self): for img in self.imgs: new_direction = np.eye(img.dimension)*3 ants.set_direction(img, new_direction) nptest.assert_allclose(ants.get_direction(img), new_direction)