def test_momentum_jet(self):
        """test_momentum_jet
        
        Test that culvert_class can accept keyword use_momentum_jet
        This does not yet imply that the values have been tested. FIXME
        """

        length = 40.
        width = 5.

        dx = dy = 1  # Resolution: Length of subdivisions on both axes

        points, vertices, boundary = rectangular_cross(int(length / dx),
                                                       int(width / dy),
                                                       len1=length,
                                                       len2=width)
        domain = anuga.Domain(points, vertices, boundary)
        domain.set_name('Test_culvert_shallow')  # Output name
        domain.set_default_order(2)

        #----------------------------------------------------------------------
        # Setup initial conditions
        #----------------------------------------------------------------------

        def topography(x, y):
            """Set up a weir
            
            A culvert will connect either side
            """
            # General Slope of Topography
            z = -x / 1000

            N = len(x)
            for i in range(N):

                # Sloping Embankment Across Channel
                if 5.0 < x[i] < 10.1:
                    # Cut Out Segment for Culvert face
                    if 1.0 + (x[i] - 5.0) / 5.0 < y[i] < 4.0 - (x[i] -
                                                                5.0) / 5.0:
                        z[i] = z[i]
                    else:
                        z[i] += 0.5 * (x[i] - 5.0)  # Sloping Segment  U/S Face
                if 10.0 < x[i] < 12.1:
                    z[i] += 2.5  # Flat Crest of Embankment
                if 12.0 < x[i] < 14.5:
                    # Cut Out Segment for Culvert face
                    if 2.0 - (x[i] - 12.0) / 2.5 < y[i] < 3.0 + (x[i] -
                                                                 12.0) / 2.5:
                        z[i] = z[i]
                    else:
                        z[i] += 2.5 - 1.0 * (x[i] - 12.0)  # Sloping D/S Face

            return z

        domain.set_quantity('elevation', topography)
        domain.set_quantity('friction', 0.01)  # Constant friction
        domain.set_quantity(
            'stage', expression='elevation + 1.0')  # Shallow initial condition

        # Boyd culvert
        culvert = Culvert_flow(
            domain,
            label='Culvert No. 1',
            description='This culvert is a test unit 1.2m Wide by 0.75m High',
            end_point0=[9.0, 2.5],
            end_point1=[13.0, 2.5],
            width=1.20,
            height=0.75,
            culvert_routine=boyd_generalised_culvert_model,
            number_of_barrels=1,
            use_momentum_jet=True,
            update_interval=2,
            verbose=False)

        domain.forcing_terms.append(culvert)

        # Call
        culvert(domain)

        #-----------------------------------------------------------------------
        # Setup boundary conditions
        #-----------------------------------------------------------------------

        Br = anuga.Reflective_boundary(domain)  # Solid reflective wall
        domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br})

        #-----------------------------------------------------------------------
        # Evolve system through time
        #-----------------------------------------------------------------------

        ref_volume = domain.get_quantity('stage').get_integral()
        for t in domain.evolve(yieldstep=0.1, finaltime=25):
            new_volume = domain.get_quantity('stage').get_integral()

            msg = (
                'Total volume has changed: Is %.8f m^3 should have been %.8f m^3'
                % (new_volume, ref_volume))
            assert num.allclose(new_volume, ref_volume, rtol=1.0e-10), msg
    def test_predicted_boyd_flow(self):
        """test_predicted_boyd_flow
        
        Test that flows predicted by the boyd method are consistent with what what
        is calculated in engineering codes.
        The data was supplied by Petar Milevski
        """

        # FIXME(Ole) this is nowhere near finished
        path = get_pathname_from_package('anuga.culvert_flows')

        length = 12.
        width = 5.

        dx = dy = 0.5  # Resolution: Length of subdivisions on both axes

        points, vertices, boundary = rectangular_cross(int(length / dx),
                                                       int(width / dy),
                                                       len1=length,
                                                       len2=width)
        domain = anuga.Domain(points, vertices, boundary)

        domain.set_name('test_culvert')  # Output name
        domain.set_default_order(2)

        #----------------------------------------------------------------------
        # Setup initial conditions
        #----------------------------------------------------------------------

        def topography(x, y):
            # General Slope of Topography
            z = -x / 10

            return z

        domain.set_quantity('elevation', topography)
        domain.set_quantity('friction', 0.01)  # Constant friction
        domain.set_quantity('stage', expression='elevation')

        Q0 = domain.get_quantity('stage')
        Q1 = Quantity(domain)

        # Add depths to stage
        head_water_depth = 0.169
        tail_water_depth = 0.089

        inlet_poly = [[0, 0], [6, 0], [6, 5], [0, 5]]
        outlet_poly = [[6, 0], [12, 0], [12, 5], [6, 5]]

        Q1.set_values(
            Polygon_function([(inlet_poly, head_water_depth),
                              (outlet_poly, tail_water_depth)]))

        domain.set_quantity('stage', Q0 + Q1)

        culvert = Culvert_flow(domain,
                               label='Test culvert',
                               description='4 m test culvert',
                               end_point0=[4.0, 2.5],
                               end_point1=[8.0, 2.5],
                               width=1.20,
                               height=0.75,
                               culvert_routine=boyd_generalised_culvert_model,
                               number_of_barrels=1,
                               verbose=False)

        domain.forcing_terms.append(culvert)

        # Call
        culvert(domain)
    def OBSOLETE_XXXtest_that_culvert_rating_limits_flow_in_shallow_inlet_condition(
            self):
        """test_that_culvert_rating_limits_flow_in_shallow_inlet_condition
        
        Test that culvert on a sloping dry bed limits flows when very little water
        is present at inlet

        This one is using the rating curve variant
        """

        path = get_pathname_from_package('anuga.culvert_flows')

        length = 40.
        width = 5.

        dx = dy = 1  # Resolution: Length of subdivisions on both axes

        points, vertices, boundary = rectangular_cross(int(length / dx),
                                                       int(width / dy),
                                                       len1=length,
                                                       len2=width)
        domain = anuga.Domain(points, vertices, boundary)
        domain.set_name('Test_culvert_shallow')  # Output name
        domain.set_default_order(2)

        #----------------------------------------------------------------------
        # Setup initial conditions
        #----------------------------------------------------------------------

        def topography(x, y):
            """Set up a weir
            
            A culvert will connect either side
            """
            # General Slope of Topography
            z = -x / 1000

            N = len(x)
            for i in range(N):

                # Sloping Embankment Across Channel
                if 5.0 < x[i] < 10.1:
                    # Cut Out Segment for Culvert face
                    if 1.0 + (x[i] - 5.0) / 5.0 < y[i] < 4.0 - (x[i] -
                                                                5.0) / 5.0:
                        z[i] = z[i]
                    else:
                        z[i] += 0.5 * (x[i] - 5.0)  # Sloping Segment  U/S Face
                if 10.0 < x[i] < 12.1:
                    z[i] += 2.5  # Flat Crest of Embankment
                if 12.0 < x[i] < 14.5:
                    # Cut Out Segment for Culvert face
                    if 2.0 - (x[i] - 12.0) / 2.5 < y[i] < 3.0 + (x[i] -
                                                                 12.0) / 2.5:
                        z[i] = z[i]
                    else:
                        z[i] += 2.5 - 1.0 * (x[i] - 12.0)  # Sloping D/S Face

            return z

        domain.set_quantity('elevation', topography)
        domain.set_quantity('friction', 0.01)  # Constant friction
        domain.set_quantity(
            'stage', expression='elevation + 0.1')  # Shallow initial condition

        # Boyd culvert
        culvert = Culvert_flow(
            domain,
            label='Culvert No. 1',
            description='This culvert is a test unit 1.2m Wide by 0.75m High',
            end_point0=[9.0, 2.5],
            end_point1=[13.0, 2.5],
            width=1.20,
            height=0.75,
            culvert_routine=boyd_generalised_culvert_model,
            number_of_barrels=1,
            update_interval=2,
            verbose=False)

        # Rating curve
        #filename = os.path.join(path, 'example_rating_curve.csv')
        #culvert = Culvert_flow(domain,
        #                       culvert_description_filename=filename,
        #                       end_point0=[9.0, 2.5],
        #                       end_point1=[13.0, 2.5],
        #                       trigger_depth=0.01,
        #                       verbose=False)

        domain.forcing_terms.append(culvert)

        #-----------------------------------------------------------------------
        # Setup boundary conditions
        #-----------------------------------------------------------------------

        # Inflow based on Flow Depth and Approaching Momentum

        Br = anuga.Reflective_boundary(domain)  # Solid reflective wall
        domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br})

        #-----------------------------------------------------------------------
        # Evolve system through time
        #-----------------------------------------------------------------------

        print 'depth', 0.1
        ref_volume = domain.get_quantity('stage').get_integral()
        for t in domain.evolve(yieldstep=0.1, finaltime=25):
            new_volume = domain.get_quantity('stage').get_integral()

            msg = (
                'Total volume has changed: Is %.8f m^3 should have been %.8f m^3'
                % (new_volume, ref_volume))
            assert num.allclose(new_volume, ref_volume, rtol=1.0e-10), msg

        return
        # Now try this again for a depth of 10 cm and for a range of other depths
        for depth in [0.1, 0.2, 0.5, 1.0]:
            print 'depth', depth
            domain.set_time(0.0)

            domain.set_quantity('elevation', topography)
            domain.set_quantity('friction', 0.01)  # Constant friction
            domain.set_quantity('stage', expression='elevation + %f' % depth)

            ref_volume = domain.get_quantity('stage').get_integral()
            for t in domain.evolve(yieldstep=0.1, finaltime=25):
                new_volume = domain.get_quantity('stage').get_integral()

                msg = 'Total volume has changed: Is %.8f m^3 should have been %.8f m^3'\
                    % (new_volume, ref_volume)

                assert num.allclose(new_volume, ref_volume, rtol=1.0e-10), msg
    def test_that_culvert_dry_bed_boyd_does_not_produce_flow(self):
        """test_that_culvert_in_dry_bed_boyd_does_not_produce_flow(self):
        
        Test that culvert on a sloping dry bed doesn't produce flows
        although there will be a 'pressure' head due to delta_w > 0

        This one is using the 'Boyd' variant        
        """

        path = get_pathname_from_package('anuga.culvert_flows')

        length = 40.
        width = 5.

        dx = dy = 1  # Resolution: Length of subdivisions on both axes

        points, vertices, boundary = rectangular_cross(int(length / dx),
                                                       int(width / dy),
                                                       len1=length,
                                                       len2=width)
        domain = anuga.Domain(points, vertices, boundary)
        domain.set_name('Test_culvert_dry')  # Output name
        domain.set_default_order(2)

        #----------------------------------------------------------------------
        # Setup initial conditions
        #----------------------------------------------------------------------

        def topography(x, y):
            """Set up a weir
            
            A culvert will connect either side
            """
            # General Slope of Topography
            z = -x / 1000

            N = len(x)
            for i in range(N):

                # Sloping Embankment Across Channel
                if 5.0 < x[i] < 10.1:
                    # Cut Out Segment for Culvert face
                    if 1.0 + (x[i] - 5.0) / 5.0 < y[i] < 4.0 - (x[i] -
                                                                5.0) / 5.0:
                        z[i] = z[i]
                    else:
                        z[i] += 0.5 * (x[i] - 5.0)  # Sloping Segment  U/S Face
                if 10.0 < x[i] < 12.1:
                    z[i] += 2.5  # Flat Crest of Embankment
                if 12.0 < x[i] < 14.5:
                    # Cut Out Segment for Culvert face
                    if 2.0 - (x[i] - 12.0) / 2.5 < y[i] < 3.0 + (x[i] -
                                                                 12.0) / 2.5:
                        z[i] = z[i]
                    else:
                        z[i] += 2.5 - 1.0 * (x[i] - 12.0)  # Sloping D/S Face

            return z

        domain.set_quantity('elevation', topography)
        domain.set_quantity('friction', 0.01)  # Constant friction
        domain.set_quantity('stage',
                            expression='elevation')  # Dry initial condition

        filename = os.path.join(path, 'example_rating_curve.csv')

        culvert = Culvert_flow(
            domain,
            label='Culvert No. 1',
            description='This culvert is a test unit 1.2m Wide by 0.75m High',
            end_point0=[9.0, 2.5],
            end_point1=[13.0, 2.5],
            width=1.20,
            height=0.75,
            culvert_routine=boyd_generalised_culvert_model,
            number_of_barrels=1,
            update_interval=2,
            verbose=False)

        domain.forcing_terms.append(culvert)

        #-----------------------------------------------------------------------
        # Setup boundary conditions
        #-----------------------------------------------------------------------

        # Inflow based on Flow Depth and Approaching Momentum

        Br = anuga.Reflective_boundary(domain)  # Solid reflective wall
        domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br})

        #-----------------------------------------------------------------------
        # Evolve system through time
        #-----------------------------------------------------------------------

        ref_volume = domain.get_quantity('stage').get_integral()
        for t in domain.evolve(yieldstep=1, finaltime=25):

            new_volume = domain.get_quantity('stage').get_integral()

            msg = 'Total volume has changed'
            assert num.allclose(new_volume, ref_volume, rtol=1.0e-10), msg
            pass
    def test_that_culvert_runs_rating(self):
        """test_that_culvert_runs_rating
        
        This test exercises the culvert and checks values outside rating curve
        are dealt with       
        """

        path = get_pathname_from_package('anuga.culvert_flows')
        path = os.path.join(path, 'tests', 'data')

        length = 40.
        width = 5.

        dx = dy = 1  # Resolution: Length of subdivisions on both axes

        points, vertices, boundary = rectangular_cross(int(length / dx),
                                                       int(width / dy),
                                                       len1=length,
                                                       len2=width)
        domain = anuga.Domain(points, vertices, boundary)
        domain.set_name('Test_culvert')  # Output name
        domain.set_default_order(2)

        #----------------------------------------------------------------------
        # Setup initial conditions
        #----------------------------------------------------------------------

        def topography(x, y):
            """Set up a weir
            
            A culvert will connect either side
            """
            # General Slope of Topography
            z = -x / 1000

            N = len(x)
            for i in range(N):

                # Sloping Embankment Across Channel
                if 5.0 < x[i] < 10.1:
                    # Cut Out Segment for Culvert face
                    if 1.0 + (x[i] - 5.0) / 5.0 < y[i] < 4.0 - (x[i] -
                                                                5.0) / 5.0:
                        z[i] = z[i]
                    else:
                        z[i] += 0.5 * (x[i] - 5.0)  # Sloping Segment  U/S Face
                if 10.0 < x[i] < 12.1:
                    z[i] += 2.5  # Flat Crest of Embankment
                if 12.0 < x[i] < 14.5:
                    # Cut Out Segment for Culvert face
                    if 2.0 - (x[i] - 12.0) / 2.5 < y[i] < 3.0 + (x[i] -
                                                                 12.0) / 2.5:
                        z[i] = z[i]
                    else:
                        z[i] += 2.5 - 1.0 * (x[i] - 12.0)  # Sloping D/S Face

            return z

        domain.set_quantity('elevation', topography)
        domain.set_quantity('friction', 0.01)  # Constant friction
        domain.set_quantity('stage',
                            expression='elevation')  # Dry initial condition

        filename = os.path.join(path, 'example_rating_curve.csv')
        culvert = Culvert_flow(domain,
                               culvert_description_filename=filename,
                               end_point0=[9.0, 2.5],
                               end_point1=[13.0, 2.5],
                               width=1.00,
                               use_velocity_head=True,
                               verbose=False)

        domain.forcing_terms.append(culvert)

        #-----------------------------------------------------------------------
        # Setup boundary conditions
        #-----------------------------------------------------------------------

        # Inflow based on Flow Depth and Approaching Momentum
        Bi = anuga.Dirichlet_boundary([0.0, 0.0, 0.0])
        Br = anuga.Reflective_boundary(domain)  # Solid reflective wall
        Bo = anuga.Dirichlet_boundary([-5, 0, 0])  # Outflow

        # Upstream and downstream conditions that will exceed the rating curve
        # I.e produce delta_h outside the range [0, 10] specified in the the
        # file example_rating_curve.csv
        Btus = anuga.Time_boundary(
            domain, lambda t: [100 * num.sin(2 * pi * (t - 4) / 10), 0.0, 0.0])
        Btds = anuga.Time_boundary(
            domain,
            lambda t: [-5 * (num.cos(2 * pi * (t - 4) / 20)), 0.0, 0.0])
        domain.set_boundary({
            'left': Btus,
            'right': Btds,
            'top': Br,
            'bottom': Br
        })

        #-----------------------------------------------------------------------
        # Evolve system through time
        #-----------------------------------------------------------------------

        min_delta_w = sys.maxint
        max_delta_w = -min_delta_w
        for t in domain.evolve(yieldstep=1, finaltime=25):
            delta_w = culvert.inlet.stage - culvert.outlet.stage

            if delta_w > max_delta_w: max_delta_w = delta_w
            if delta_w < min_delta_w: min_delta_w = delta_w

            pass

        # Check that extreme values in rating curve have been exceeded
        # so that we know that condition has been exercised
        assert min_delta_w < 0
        assert max_delta_w > 10

        os.remove('Test_culvert.sww')