示例#1
0
    def test_solve_large_2d_with_default_guess_using_c_ext_with_jacobi(self):
        """Standard 2d laplacian using default first guess"""

        n = 20
        m = 10

        A = Sparse(m * n, m * n)

        for i in num.arange(0, n):
            for j in num.arange(0, m):
                I = j + m * i
                A[I, I] = 4.0
                if i > 0:
                    A[I, I - m] = -1.0
                if i < n - 1:
                    A[I, I + m] = -1.0
                if j > 0:
                    A[I, I - 1] = -1.0
                if j < m - 1:
                    A[I, I + 1] = -1.0

        xe = num.ones((n * m, ), num.float)
        A = Sparse_CSR(A)
        b = A * xe
        x = conjugate_gradient(A, b, use_c_cg=True, precon='Jacobi')

        assert num.allclose(x, xe)
示例#2
0
    def test_solve_large_2d_csr_matrix_using_c_ext(self):
        """Standard 2d laplacian with csr format
        """

        n = 100
        m = 100

        A = Sparse(m * n, m * n)

        for i in num.arange(0, n):
            for j in num.arange(0, m):
                I = j + m * i
                A[I, I] = 4.0
                if i > 0:
                    A[I, I - m] = -1.0
                if i < n - 1:
                    A[I, I + m] = -1.0
                if j > 0:
                    A[I, I - 1] = -1.0
                if j < m - 1:
                    A[I, I + 1] = -1.0

        xe = num.ones((n * m, ), num.float)

        # Convert to csr format
        #print 'start covert'
        A = Sparse_CSR(A)
        #print 'finish covert'
        b = A * xe
        x = conjugate_gradient(A, b, b, iprint=20, use_c_cg=True)

        assert num.allclose(x, xe)
示例#3
0
    def test_solve_large_using_c_ext_with_jacobi(self):
        """Standard 1d laplacian """

        n = 50
        A = Sparse(n, n)

        for i in num.arange(0, n):
            A[i, i] = 1.0
            if i > 0:
                A[i, i - 1] = -0.5
            if i < n - 1:
                A[i, i + 1] = -0.5

        xe = num.ones((n, ), num.float)

        b = A * xe

        A = Sparse_CSR(A)

        x = conjugate_gradient(A,
                               b,
                               b,
                               tol=1.0e-5,
                               use_c_cg=True,
                               precon='Jacobi')

        assert num.allclose(x, xe)
示例#4
0
    def test_solve_large_2d_using_c_ext(self):
        """Standard 2d laplacian"""

        n = 20
        m = 10

        A = Sparse(m * n, m * n)

        for i in num.arange(0, n):
            for j in num.arange(0, m):
                I = j + m * i
                A[I, I] = 4.0
                if i > 0:
                    A[I, I - m] = -1.0
                if i < n - 1:
                    A[I, I + m] = -1.0
                if j > 0:
                    A[I, I - 1] = -1.0
                if j < m - 1:
                    A[I, I + 1] = -1.0

        xe = num.ones((n * m, ), num.float)
        A = Sparse_CSR(A)
        b = A * xe
        x = conjugate_gradient(A, b, b, iprint=1, use_c_cg=True)

        assert num.allclose(x, xe)
示例#5
0
    def test_sparse_solve_using_c_ext_with_jacobi(self):
        """Solve Small Sparse Matrix"""

        A = [[2.0, -1.0, 0.0, 0.0], [-1.0, 2.0, -1.0, 0.0],
             [0.0, -1.0, 2.0, -1.0], [0.0, 0.0, -1.0, 2.0]]

        A = Sparse_CSR(Sparse(A))

        xe = [0.0, 1.0, 2.0, 3.0]
        b = A * xe
        x = [0.0, 0.0, 0.0, 0.0]
        x = conjugate_gradient(A, b, x, use_c_cg=True, precon='Jacobi')

        assert num.allclose(x, xe)
示例#6
0
    def test_sparse_solve_matrix_using_c_ext(self):
        """Solve Small Sparse Matrix"""

        A = [[2.0, -1.0, 0.0, 0.0], [-1.0, 2.0, -1.0, 0.0],
             [0.0, -1.0, 2.0, -1.0], [0.0, 0.0, -1.0, 2.0]]

        A = Sparse_CSR(Sparse(A))

        xe = [[0.0, 0.0], [1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]
        b = A * xe
        x = [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]
        x = conjugate_gradient(A, b, x, iprint=0, use_c_cg=True)

        assert num.allclose(x, xe)
示例#7
0
    def _build_coefficient_matrix_B(self, verbose=False):
        """
        Build final coefficient matrix from AtA and D
        """

        msize = self.mesh.number_of_nodes

        self.B = fitsmooth.build_matrix_B(self.D, \
                                          self.AtA, self.alpha)

        # Convert self.B matrix to CSR format
        self.B = Sparse_CSR(data=num.array(self.B[0]),\
                                  Colind=num.array(self.B[1]),\
                                  rowptr=num.array(self.B[2]), \
                                  m=msize, n=msize)
示例#8
0
    def build_elliptic_matrix(self, a):
        """
        Builds matrix representing

        div ( a grad )

        which has the form [ A B ]
        """

        #Arrays self.operator_data, self.operator_colind, self.operator_rowptr
        # are setup via this call
        kinematic_viscosity_operator_ext.build_elliptic_matrix(self, \
                a.centroid_values, \
                a.boundary_values)

        self.elliptic_matrix = Sparse_CSR(None, \
                self.operator_data, self.operator_colind, self.operator_rowptr, \
                self.n, self.tot_len)
示例#9
0
    def test_max_iter_using_c_ext(self):
        """Test max iteration Small Sparse Matrix"""

        A = [[2.0, -1.0, 0.0, 0.0], [-1.0, 2.0, -1.0, 0.0],
             [0.0, -1.0, 2.0, -1.0], [0.0, 0.0, -1.0, 2.0]]

        A = Sparse_CSR(Sparse(A))

        xe = [0.0, 1.0, 2.0, 3.0]
        b = A * xe
        x = [0.0, 0.0, 0.0, 0.0]

        try:
            x = conjugate_gradient(A, b, x, imax=2, use_c_cg=True)
        except ConvergenceError:
            pass
        else:
            msg = 'Should have raised exception'
            raise TestError, msg
示例#10
0
def _conjugate_gradient_preconditioned(A, b, x0, M, 
                        imax=10000, tol=1.0e-8, atol=1.0e-10, iprint=None, Type='None'):
    """
   Try to solve linear equation Ax = b using
   preconditioned conjugate gradient method

   Input
   A: matrix or function which applies a matrix, assumed symmetric
      A can be either dense or sparse or a function
      (__mul__ just needs to be defined)
   b: right hand side
   x0: inital guess (default the 0 vector)
   imax: max number of iterations
   tol: tolerance used for residual

   Output
   x: approximate solution
   """

    # Padarn note: This is temporary while the Jacboi preconditioner is the only
    # one avaliable.
    D=[]
    if not Type=='Jacobi':
        log.warning('Only the Jacobi Preconditioner is impletment cg_solve python')
        msg = 'Only the Jacobi Preconditioner is impletment in cg_solve python'
        raise PreconditionerError, msg
    else:
        D=Sparse(A.M, A.M)
        for i in range(A.M):
            D[i,i]=1/M[i]
        D=Sparse_CSR(D)

    stats = Stats()

    b  = num.array(b, dtype=num.float)
    if len(b.shape) != 1:
        raise VectorShapeError, 'input vector should consist of only one column'

    if x0 is None:
        x0 = num.zeros(b.shape, dtype=num.float)
    else:
        x0 = num.array(x0, dtype=num.float)

    stats.x0 = num.linalg.norm(x0)

    if iprint is None or iprint == 0:
        iprint = imax

    dx = 0.0
    
    i = 1
    x = x0
    r = b - A * x
    z = D * r
    d = r
    rTr = num.dot(r, z)
    rTr0 = rTr

    stats.rTr0 = rTr0
    
    #FIXME Let the iterations stop if starting with a small residual
    while (i < imax and rTr > tol ** 2 * rTr0 and rTr > atol ** 2):
        q = A * d
        alpha = rTr / num.dot(d, q)
        xold = x
        x = x + alpha * d

        dx = num.linalg.norm(x-xold)
        
        #if dx < atol :
        #    break

        # Padarn Note 26/11/12: This modification to the algorithm seems
        # unnecessary, but also seem to have been implemented incorrectly -
        # it was set to perform the more expensive r = b - A * x routine in
        # 49/50 iterations. Suggest this being either removed completely or
        # changed to 'if i%50==0' (or equvialent).  
        #if i % 50:
        if False:
            r = b - A * x
        else:
            r = r - alpha * q
        rTrOld = rTr
        z = D * r
        rTr = num.dot(r, z)
        bt = rTr / rTrOld

        d = z + bt * d
        i = i + 1
        if i % iprint == 0:
            log.info('i = %g rTr = %15.8e dx = %15.8e' % (i, rTr, dx))

        if i == imax:
            log.warning('max number of iterations attained')
            msg = 'Conjugate gradient solver did not converge: rTr==%20.15e' % rTr
            raise ConvergenceError, msg

    stats.x = num.linalg.norm(x)
    stats.iter = i
    stats.rTr = rTr
    stats.dx = dx

    return x, stats
示例#11
0
    def __init__(self, domain, use_triangle_areas=True, verbose=False):
        if verbose:
            log.critical('Kinematic Viscosity: Beginning Initialisation')

        Operator.__init__(self, domain)

        #Expose the domain attributes
        self.mesh = self.domain.mesh
        self.boundary = domain.boundary
        self.boundary_enumeration = domain.boundary_enumeration

        # Setup a quantity as diffusivity
        # FIXME SR: Could/Should pass a quantity which already exists
        self.diffusivity = Quantity(self.domain)
        self.diffusivity.set_values(1.0)
        self.diffusivity.set_boundary_values(1.0)

        self.n = len(self.domain)

        self.dt = 0.0  #Need to set to domain.timestep
        self.dt_apply = 0.0

        self.boundary_len = len(self.domain.boundary)
        self.tot_len = self.n + self.boundary_len

        self.verbose = verbose

        #Geometric Information
        if verbose:
            log.critical('Kinematic Viscosity: Building geometric structure')

        self.geo_structure_indices = num.zeros((self.n, 3), num.int)
        self.geo_structure_values = num.zeros((self.n, 3), num.float)

        # Only needs to built once, doesn't change
        kinematic_viscosity_operator_ext.build_geo_structure(self)

        # Setup type of scaling
        self.set_triangle_areas(use_triangle_areas)

        # FIXME SR: should this really be a matrix?
        temp = Sparse(self.n, self.n)
        for i in range(self.n):
            temp[i, i] = 1.0 / self.mesh.areas[i]

        self.triangle_areas = Sparse_CSR(temp)
        #self.triangle_areas

        # FIXME SR: More to do with solving equation
        self.qty_considered = 1  #1 or 2 (uh or vh respectively)

        #Sparse_CSR.data
        self.operator_data = num.zeros((4 * self.n, ), num.float)
        #Sparse_CSR.colind
        self.operator_colind = num.zeros((4 * self.n, ), num.int)
        #Sparse_CSR.rowptr (4 entries in every row, we know this already) = [0,4,8,...,4*n]
        self.operator_rowptr = 4 * num.arange(self.n + 1)

        # Build matrix self.elliptic_matrix [A B]
        self.build_elliptic_matrix(self.diffusivity)

        self.boundary_term = num.zeros((self.n, ), num.float)

        self.parabolic = False  #Are we doing a parabolic solve at the moment?

        self.u_stats = None
        self.v_stats = None

        if verbose: log.critical('Elliptic Operator: Initialisation Done')