tic = time.time() with sitr.ScanImageTiffReader(os.path.join(dir_imgs, files_ca[0])) as reader: I_si = reader.data() print("SI time = {}".format(time.time() - tic)) #%% ch_camTrig = 'patch1' ch_stim = 'patch3' frameRate = 50 path_bas = os.path.join(os.path.split(dir_imgs)[0], 't01_bas.16ch') import apCode.ephys as ephys bas = ephys.importCh(path_bas, nCh=16) print(bas.keys()) inds_stim = spt.levelCrossings(bas[ch_stim], thr=2)[0] dInds = np.diff(bas['t'][inds_stim]) inds_del = np.where(dInds < 15)[0] + 1 inds_stim = np.delete(inds_stim, inds_del) inds_camTrig = spt.levelCrossings(bas[ch_camTrig], thr=2)[0] dInds = np.diff(bas['t'][inds_camTrig]) inds_del = np.where(dInds <= (0.5 / frameRate))[0] + 1 inds_camTrig = np.delete(inds_camTrig, inds_del) # plt.plot(bas[ch_camTrig]) # plt.plot(inds_camTrig,bas[ch_camTrig][inds_camTrig],'o') print('# stims = {}, # of camera triggers = {}'.format(len(inds_stim), len(inds_camTrig))) #%% #%% maxAllowedTimeBetweenStimAndCamTrig = 0.5 # In sec
def readPeriStimulusTifImages(tifPaths, basPaths, nBasCh = 16, ch_camTrig = 'patch4', ch_stim = 'patch3',\ tifNameStr = '', time_preStim = 1, time_postStim = 10, thr_stim = 1.5,\ thr_camTrig = 1, maxAllowedTimeBetweenStimAndCamTrig = 0.5, n_jobs = 1): """ Given the directory to .tif files stored by ScanImage (Bessel beam image settings) and the full path to the accompanying bas files returns a dictionary with values holding peri-stimulus image data (Ca activity) in trialized format along with some other pertinent info. Parameters ---------- tifDir: string Path to directory holding .tif files written by ScanImage. In the current setting, each .tif file holds nCh*3000 images, where nCh = number of channels. basPath: string Full path to the bas (BehavAndScan) file accompanying the imaging session. nBasCh: scalar Number of signal channels in the bas file. ch_camTrig: string Name of the channel in bas corresponding to the camera trigger signal ch_stim: string Name of the stimulus signal channel in bas. tifNameStr: string Only .tif files containing this will be read. time_preStim: scalar The length of the pre-stimulus time to include when reading images time_postStim: scalar The length of the post-stimulus time. thr_stim: scalar Threshold to use for detection of stimuli in the stimulus channel of bas. thr_camTrig: scalar Threshold to use for detection of camera trigger onsets in the camera trigger channel of bas. maxAllowedTimeBetweenStimAndCamTrig: scalar If a camera trigger is separated in time by the nearest stimulus by longer than this time interval, then ignore this stimulus trial. Returns ------- D: dict Dictionary contaning the following keys: 'I': array, (nTrials, nTime, nImageChannels, imageWidth, imageHeight) Image hyperstack arranged in conveniently-accessible trialized format. 'tifInfo': dict Dictionary holding useful image metadata. Has following keys: 'filePaths': list of strings Paths to .tif files 'nImagesInfile': scalar int Number of images in each .tif file after accounting of number of image channels 'nChannelsInFile': scalar int Number of image channels 'inds_stim': array of integers, (nStim,) Indices in bas coordinates where stimuli occurred. 'inds_stim_img': array of integers, (nStim,) Indices in image coordinates where stimuli occurred 'inds_camTrig': array of integers, (nCameraTriggers,) Indices in bas coordinates corresponding to the onsets of camera triggers. 'bas': dict BehavAndScan data """ import tifffile as tff import numpy as np import apCode.FileTools as ft import apCode.ephys as ephys import apCode.SignalProcessingTools as spt import apCode.util as util # import os def getImgIndsInTifs(tifInfo): nImgsInFile_cum = np.cumsum(tifInfo['nImagesInFile'] * tifInfo['nChannelsInFile']) imgIndsInTifs = [] for i in range(len(nImgsInFile_cum)): if i == 0: inds_ = np.arange(0, nImgsInFile_cum[i]) else: inds_ = np.arange(nImgsInFile_cum[i - 1], nImgsInFile_cum[i]) imgIndsInTifs.append(inds_) return imgIndsInTifs ### Read relevant metadata from tif files in directory print('Reading ScanImage metadata from tif files...') tifInfo = ft.scanImageTifInfo(tifPaths) nCaImgs = np.sum(tifInfo['nImagesInFile']) ### Check for consistency in the number of image channels in all files. if len(np.unique(tifInfo['nChannelsInFile'])) > 1: print('Different number of image channels across files, check files!') return None nImgCh = tifInfo['nChannelsInFile'][0] print(f'{nCaImgs} {nImgCh}-channel images from all tif files') ### Get a list of indices corresponding to images in each of the tif files inds_imgsInTifs = getImgIndsInTifs(tifInfo) ### Read bas file to get stimulus and camera trigger indices required to align images and behavior print( 'Reading and joining bas files, detecting stimuli and camera triggers...' ) basList = [ephys.importCh(bp, nCh=nBasCh) for bp in basPaths] bas = concatenateBas(basList) inds_stim = spt.levelCrossings(bas[ch_stim], thr=thr_stim)[0] if len(inds_stim) == 0: print( f'Only {len(inds_stim)} stims detected, check channel specification or threshold' ) return dict(bas=bas) inds_camTrig = spt.levelCrossings(bas[ch_camTrig], thr=thr_camTrig)[0] if len(inds_camTrig) == 0: print( f'Only {len(inds_camTrig)} cam trigs detected, check channel specification or threshold' ) return dict(bas=bas) dt_vec = np.diff(bas['t'][inds_camTrig]) dt_ca = np.round(np.mean(dt_vec) * 100) / 100 print('Ca sampling rate = {}'.format(1 / dt_ca)) inds_del = np.where(dt_vec <= (0.5 * dt_ca))[0] + 1 inds_camTrig = np.delete(inds_camTrig, inds_del) ### Deal with possible mismatch in number of camera trigger indices and number of images in tif files if nCaImgs < len(inds_camTrig): inds_camTrig = inds_camTrig[:nCaImgs] nCaImgs_extra = 0 elif nCaImgs > len(inds_camTrig): nCaImgs_extra = nCaImgs - len(inds_camTrig) else: nCaImgs_extra = 0 print('{} extra Ca2+ images'.format(nCaImgs_extra)) print('{} stimuli and {} camera triggers'.format(len(inds_stim), len(inds_camTrig))) ### Indices of ca images closest to stimulus inds_stim_img = spt.nearestMatchingInds(inds_stim, inds_camTrig) ### Find trials where the nearest cam trigger is farther than the stimulus by a certain amount inds_camTrigNearStim = inds_camTrig[inds_stim_img] t_stim = bas['t'][inds_stim] t_camTrigNearStim = bas['t'][inds_camTrigNearStim] inds_tooFar = np.where( np.abs(t_stim - t_camTrigNearStim) > maxAllowedTimeBetweenStimAndCamTrig)[0] inds_ca_all = np.arange(nCaImgs) nPreStim = int(time_preStim / dt_ca) nPostStim = int(time_postStim / dt_ca) print("{} pre-stim points, and {} post-stim points".format( nPreStim, nPostStim)) inds_ca_trl = np.array( spt.segmentByEvents(inds_ca_all, inds_stim_img + nCaImgs_extra, nPreStim, nPostStim)) ### Find trials that are too short to include the pre- or post-stimulus period trlLens = np.array([len(trl_) for trl_ in inds_ca_trl]) inds_tooShort = np.where(trlLens < np.max(trlLens))[0] inds_trl_del = np.union1d(inds_tooFar, inds_tooShort) inds_trl_keep = np.setdiff1d(np.arange(len(inds_ca_trl)), inds_trl_del) ### Exclude the above 2 types of trials from consideration if len(inds_trl_del) > 0: print('Excluding the trials {}'.format(inds_trl_del)) inds_ca_trl = inds_ca_trl[inds_trl_keep] I = [] print('Reading trial-related images from tif files...') nTrls = len(inds_ca_trl) def trlImages(inds_ca_trl, inds_imgsInTifs, nImgCh, tifInfo, trl): trl_ = np.arange(trl.min() * nImgCh, (trl.max() + 1) * nImgCh) loc = util.locateItemsInSetsOfItems(trl_, inds_imgsInTifs) I_ = [] for subInds, supInd in zip(loc['subInds'], loc['supInds']): with tff.TiffFile(tifInfo['filePaths'][supInd]) as tif: img = tif.asarray(key=subInds) I_.extend(img.reshape(-1, nImgCh, *img.shape[1:])) I_ = np.array(I_) return I_ if n_jobs < 2: chunkSize = int(nTrls / 5) for iTrl, trl in enumerate(inds_ca_trl): if np.mod(iTrl, chunkSize) == 0: print('Trl # {}/{}'.format(iTrl + 1, nTrls)) I_ = trlImages(inds_ca_trl, inds_imgsInTifs, nImgCh, tifInfo, trl) I.append(I_) else: print('Processing with dask') import dask from dask.diagnostics import ProgressBar for trl in inds_ca_trl: I_ = dask.delayed(trlImages)(inds_ca_trl, inds_imgsInTifs, nImgCh, tifInfo, trl) I.append(I_) with ProgressBar(): I = dask.compute(*I) D = dict(I = np.squeeze(np.array(I)), tifInfo = tifInfo, inds_stim = inds_stim, inds_stim_img = inds_stim_img,\ inds_camTrig = inds_camTrig,bas = bas, inds_trl_excluded = inds_trl_del) return D