示例#1
0
文件: module.py 项目: quuhua911/NeMo
    def initialize_word_embeddings(self, init_method, vocab_size, hidden_size):
        if not self.share_word_embeddings:
            raise Exception('initialize_word_embeddings() was called but '
                            'share_word_embeddings is false')

        # This function just initializes the word embeddings in the final stage
        # when we are using pipeline parallelism. If we aren't using pipeline
        # parallelism there is nothing to do.
        if parallel_state.get_pipeline_model_parallel_world_size() == 1:
            return

        # Parameters are shared between the word embeddings layer, and the
        # heads at the end of the model. In a pipelined setup with more than
        # one stage, the initial embedding layer and the head are on different
        # workers, so we do the following:
        # 1. Create a second copy of word_embeddings on the last stage, with
        #    initial parameters of 0.0.
        # 2. Do an all-reduce between the first and last stage to ensure that
        #    the two copies of word_embeddings start off with the same
        #    parameter values.
        # 3. In the training loop, before an all-reduce between the grads of
        #    the two word_embeddings layers to ensure that every applied weight
        #    update is the same on both stages.
        if parallel_state.is_pipeline_last_stage():
            assert not parallel_state.is_pipeline_first_stage()
            self._word_embeddings_for_head_key = 'word_embeddings_for_head'
            # set word_embeddings weights to 0 here, then copy first
            # stage's weights using all_reduce below.
            self.word_embeddings = tensor_parallel.VocabParallelEmbedding(
                vocab_size, hidden_size, init_method=init_method)
            self.word_embeddings.weight.data.fill_(0)
            self.word_embeddings.weight.shared = True
示例#2
0
    def initialize_word_embeddings(self,
                                   init_method,
                                   vocab_size,
                                   hidden_size,
                                   pipeline_model_parallel_size=1):
        if not self.share_word_embeddings:
            raise Exception('initialize_word_embeddings() was called but '
                            'share_word_embeddings is false')

        # TODO: pipeline model parallelism is not implemented in NeMo yet
        # This function just initializes the word embeddings in the final stage
        # when we are using pipeline parallelism. If we aren't using pipeline
        # parallelism there is nothing to do.
        if pipeline_model_parallel_size == 1:
            return

        # Parameters are shared between the word embeddings layer, and the
        # heads at the end of the model. In a pipelined setup with more than
        # one stage, the initial embedding layer and the head are on different
        # workers, so we do the following:
        # 1. Create a second copy of word_embeddings on the last stage, with
        #    initial parameters of 0.0.
        # 2. Do an all-reduce between the first and last stage to ensure that
        #    the two copies of word_embeddings start off with the same
        #    parameter values.
        # 3. In the training loop, before an all-reduce between the grads of
        #    the two word_embeddings layers to ensure that every applied weight
        #    update is the same on both stages.
        if parallel_state.is_pipeline_last_stage():
            assert not parallel_state.is_pipeline_first_stage()
            self._word_embeddings_for_head_key = 'word_embeddings_for_head'
            # set word_embeddings weights to 0 here, then copy first
            # stage's weights using all_reduce below.
            self.word_embeddings = tensor_parallel.VocabParallelEmbedding(
                vocab_size, hidden_size, init_method=init_method)
            self.word_embeddings.weight.data.fill_(0)
            self.word_embeddings.weight.shared = True

        # Ensure that first and last stages have the same initial parameter
        # values.
        if torch.distributed.is_initialized():
            if parallel_state.is_pipeline_first_stage(
            ) or parallel_state.is_pipeline_last_stage():
                torch.distributed.all_reduce(
                    self.word_embeddings_weight().data,
                    group=parallel_state.get_embedding_group())
        else:
            print("WARNING! Distributed processes aren't initialized, so "
                  "word embeddings in the last layer are not initialized. "
                  "If you are just manipulating a model this is fine, but "
                  "this needs to be handled manually. If you are training "
                  "something is definitely wrong.")
示例#3
0
    def __init__(
        self,
        hidden_size,
        vocab_size,
        max_sequence_length,
        embedding_dropout_prob,
        init_method,
        num_tokentypes=0,
        use_cpu_initialization=False,
    ):
        super(Embedding, self).__init__()

        self.hidden_size = hidden_size
        self.init_method = init_method
        self.num_tokentypes = num_tokentypes

        # Word embeddings (parallel).
        self.word_embeddings = tensor_parallel.VocabParallelEmbedding(
            vocab_size,
            self.hidden_size,
            init_method=self.init_method,
            use_cpu_initialization=use_cpu_initialization,
        )
        self._word_embeddings_key = 'word_embeddings'

        # Position embedding (serial).
        self.position_embeddings = torch.nn.Embedding(max_sequence_length,
                                                      self.hidden_size)
        self._position_embeddings_key = 'position_embeddings'
        # Initialize the position embeddings.
        self.init_method(self.position_embeddings.weight)

        # Token type embedding.
        # Add this as an optional field that can be added through
        # method call so we can load a pretrain model without
        # token types and add them as needed.
        self._tokentype_embeddings_key = 'tokentype_embeddings'
        if self.num_tokentypes > 0:
            self.tokentype_embeddings = torch.nn.Embedding(
                self.num_tokentypes, self.hidden_size)
            # Initialize the token-type embeddings.
            self.init_method(self.tokentype_embeddings.weight)
        else:
            self.tokentype_embeddings = None

        # Embeddings dropout
        self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)