async def recognize(): if len([line.strip() for line in open("queue.txt")]) > 0: filename = await rofl.async_run_from_queue(ioloop, fps_factor=60, emotions=True) api.upload_video(filename, upload_name=filename.split('/')[-1], folder_id=rofl_folder) api.upload_video(filename, upload_name=filename, room_num=room) return filename else: await asyncio.sleep(5) return 0
def send_file(filename, link=''): r = api.upload_video("video_output/" + filename, filename.split('/')[-1], folder_id=rofl_folder) _id = r['id'] """Show result endpoint.""" return "https://drive.google.com/file/d/" + _id + "/" + link
async def message_handler(self, text, message_id): if not api.validate(text): logging.debug('invalid url received: {0}'.format(text)) await self.reply(replies.INVALID_URL, message_id) return await self.reply(replies.UPLOAD_STARTED, message_id) video_data = api.download(text, config['tmp_path']) video_vk_url = api.upload_video(vk_api, video_data.path, video_data.name) os.remove(video_data.path) logging.info("uploaded: {0} -> {1}".format(text, video_vk_url)) await self.reply(replies.UPLOADED_VIDEO.format(video_vk_url), message_id)
from rofl import ROFL from recognizer import Recognizer from encode import encode_cluster_sf import api model = "trained_knn_model.clf" # recog = Recognizer() # recog.train(n_neighbors=2, model_save_path=model) # rofl = ROFL(recognizer_path=model, retina=True, on_gpu=True, emotions=True) filename = "jackle.mp4" filename1 = "twice.mp4" api.upload_video("video_output/2020-08-12_08-00_305_54.mp4", upload_name="2020-08-12_08:00_305.mp4", folder_id="1iR8EpBv0jGPwVQ7YepeFPccj4a0jhzPJ") # rofl.basic_run(".", filename1, fps_factor=30, recognize=True, emotions=True) # rofl.run_emotions(".", filename1, fps_factor=30) # rofl.basic_run(".", filename, fps_factor=30) # rofl.run_and_remember_strangers(filename, fps_factor=30) # encode_cluster_sf("./strangers", "./enc_cluster.pickle") # rofl.clust.remember_strangers("enc_cluster.pickle", save_path="known_faces")