示例#1
0
class UpdateModelEvaluateResource(Resource):
    @parse({
        "model_evaluate_id":
        fields.Integer(required=True),
        "model_evaluate_state":
        fields.String(required=True),
        "model_evaluate_result":
        fields.Dict(),
        "model_type":
        fields.String(required=True,
                      validate=lambda x: x in
                      ('extract', 'classify', 'relation', 'wordseg'))
    })
    def put(self, args):
        """
        更新一条评估记录
        """
        update_params = {}
        if args.get("model_evaluate_state"):
            update_params.update(evaluate_task_status=status_str2int_mapper()[
                args["model_evaluate_state"]])
        if args.get("model_evaluate_result"):
            update_params.update(
                evaluate_task_result=args["model_evaluate_result"])

        evaluate_task = ModelEvaluateService().update_evaluate_task_by_id(
            evaluate_task_id=args["model_evaluate_id"], args=update_params)
        result = EvaluateTaskSchema().dump(evaluate_task)
        return {
            "message": "更新成功",
            "result": result,
        }, 201
示例#2
0
class TrainTermItemResource(Resource):
    @parse({
        "train_term_state": fields.String(),
        "train_term_result": fields.Dict(),
        "model_type": fields.String(required=True, validate=lambda x: x in ('extract', 'classify')),
    })
    def patch(
            self: Resource,
            args: typing.Dict,
            model_id: int,
            model_train_id: int,
            train_term_id: int,
    ) -> typing.Tuple[typing.Dict, int]:
        """
        修改模型训练的一个字段状态
        """
        update_params = {}
        if args.get("train_term_state"):
            update_params.update(train_term_status=status_str2int_mapper()[args["train_term_state"]])
        if args.get("train_term_result"):
            update_params.update(train_term_result=args["train_term_result"])
        train_term_task = ModelTrainService().update_train_task_term_by_id(train_term_task_id=train_term_id, args=update_params)
        result = TrainTermTaskSchema().dump(train_term_task)
        return {
                   "message": "更新成功",
                   "result": result,
               }, 200
示例#3
0
class UpdateTrainTermResource(Resource):
    @parse({
        "model_version": fields.String(required=True),
        "doc_term_id": fields.Integer(required=True),
        "train_term_state": fields.String(required=True),
        "train_term_result": fields.Dict(),
        "term_type": fields.String(required=True),
        "model_type": fields.String(required=True,
                                    validate=lambda x: x in ('extract', 'classify', 'relation', 'wordseg'))
    })
    def put(self, args):
        """
        修改模型训练的一个字段状态
        """
        update_params = {}
        if args.get("train_term_state"):
            update_params.update(train_term_status=status_str2int_mapper()[args["train_term_state"]])
        if args.get("train_term_result"):
            update_params.update(train_term_result=args["train_term_result"])
        train_term_task = ModelTrainService().update_train_term_by_model_version_and_doc_term_id(model_version=args["model_version"],
                                                                                                 doc_term_id=args["doc_term_id"],
                                                                                                 args=update_params)
        result = TrainTermTaskSchema().dump(train_term_task)
        return {
                   "message": "更新成功",
                   "result": result,
               }, 201
示例#4
0
class ClassifyDocRuleItemResource(Resource):
    def get(self, doc_type_id, doc_rule_id):
        result = DocTermService().get_classify_rule(doc_rule_id)
        return {
                   "message": "请求成功",
                   "result": result,
               }, 200

    @parse({
        "rule_content": fields.Dict(),
        "state": fields.Integer()
    })
    def patch(self, args, doc_type_id, doc_rule_id):
        result = DocTermService().update_classify_rule(args, doc_rule_id)
        DocTermService().update_rule_to_redis(doc_type_id)
        r.delete(f'classify:rule:{doc_type_id}')
        return {
                   "message": "更新成功",
                   "result": result,
               }, 200

    def delete(self, doc_type_id, doc_rule_id):
        DocTermService().delete_doc_rule(doc_rule_id)
        DocTermService().update_rule_to_redis(doc_type_id)
        r.delete(f'classify:rule:{doc_type_id}')

        return {
                   "message": "删除成功",
               }, 204
class TrainTermTaskSchema(Schema):  # type: ignore
    train_term_id = fields.Integer(attribute="train_term_task_id")
    train_term_result = fields.Dict()
    train_term_state = fields.Function(
        lambda obj: StatusEnum(obj.train_term_status).name)
    model_train_id = fields.Integer(attribute="train_task_id")
    doc_term_id = fields.Integer()
class PredictTaskSchema(Schema):
    doc_type = fields.Nested(DocTypeSchema)
    doc = fields.Nested(DocSchema)

    task_id = fields.Integer(attribute="predict_task_id")
    task_result = fields.Dict(attribute="predict_task_result")
    task_state = fields.Function(
        lambda obj: StatusEnum(obj.predict_task_status).name)
    created_time = fields.DateTime()
class TrainTaskSchema(Schema):  # type: ignore
    model_train_id = fields.Integer(attribute="train_task_id")
    model_train_config = fields.Dict(attribute="train_config")
    model_train_state = fields.Function(
        lambda obj: StatusEnum(obj.train_status).name)
    model_id = fields.Integer(attribute="train_job_id")
    mark_job_ids = fields.List(fields.Integer())
    train_terms = fields.List(fields.Nested(TrainTermTaskSchema))
    created_time = fields.DateTime()
    last_updated_time = fields.DateTime(attribute="updated_time")
    model_version = fields.String()
class EvaluateTaskSchema(Schema):
    model_evaluate_id = fields.Integer(attribute="evaluate_task_id")
    model_evaluate_name = fields.String(attribute="evaluate_task_name")
    model_evaluate_desc = fields.String(attribute="evaluate_task_desc")
    model_evaluate_state = fields.Function(
        lambda obj: StatusEnum(obj.evaluate_task_status).name)
    model_evaluate_result = fields.Dict(attribute="evaluate_task_result")
    model_id = fields.Integer(attribute="train_job_id")
    mark_job_ids = fields.List(fields.Integer())
    created_time = fields.DateTime()
    last_updated_time = fields.DateTime(attribute="updated_time")
示例#9
0
class TrainJobSchema(Schema):  # type: ignore
    model_id = fields.Integer(attribute='train_job_id')
    model_name = fields.String(attribute="train_job_name")
    model_desc = fields.String(attribute="train_job_desc")
    status = fields.Function(lambda obj: not obj.is_deleted)
    doc_type = fields.Nested(DocTypeSchema)
    created_time = fields.String()
    model_version = fields.String()
    train_list = fields.List(fields.Nested(TrainTaskSchema))
    model_evaluate = fields.Nested(EvaluateTaskSchema)
    preprocess = fields.Dict()
示例#10
0
class ClassifyDocRuleListResource(Resource):
    @parse({
        "offset": fields.Integer(missing=0),
        "limit": fields.Integer(missing=10),
        "timestamp": fields.String(),
    })
    def get(self, args, doc_type_id):
        """
        规则列表
        """
        redis_key = f'classify:rule:{doc_type_id}'
        if args.get("timestamp"):
            try:
                result = json.loads(r.get(redis_key))
                if result['timestamp'] == args["timestamp"]:
                    result.update(update=False)
                    return result
            except Exception:
                pass
        # TODO 查询优化
        result, count, timestamp = DocTermService().get_classify_doc_rule(doc_type_id, args.get("offset"),
                                                                          args.get("limit"))
        data = {
            "message": "请求成功",
            "result": result,
            "timestamp": timestamp,
            "update": True,
            "count": count,
        }
        if args.get("timestamp"):
            r.set(redis_key, json.dumps(data), ex=24 * 60 * 60)
        return data, 200

    @parse({
        "doc_term_id": fields.Integer(required=True),
        "rule_type": fields.String(required=True),
        "rule_content": fields.Dict(required=True)
    })
    def post(self, args, doc_type_id):
        try:
            result = DocTermService().create_new_rule(args)
            DocTermService().update_rule_to_redis(doc_type_id)
            r.delete(f'classify:rule:{doc_type_id}')
            return {
                       "message": "创建成功",
                       "result": result,
                   }, 201
        except ValueError as e:
            abort(400, message=str(e))
示例#11
0
class ClassifyModelListResource(Resource, CurrentUserMixin):
    @parse({
        "query": fields.String(missing=''),
        "offset": fields.Integer(missing=0),
        "limit": fields.Integer(missing=10),
        "doc_type_id": fields.Integer(missing=0),
        'order_by': fields.String(missing='-created_time'),
    })
    def get(self: Resource, args: Dict[str,
                                       Any]) -> Tuple[Dict[str, Any], int]:
        """
        获取模型记录,分页
        """
        count, train_job_list = ModelService(
        ).get_train_job_list_by_nlp_task_id(
            nlp_task_id=int(NlpTaskEnum.classify),
            doc_type_id=args['doc_type_id'],
            search=args['query'],
            offset=args['offset'],
            limit=args['limit'],
            current_user=self.get_current_user())
        # get the serialized result
        result = TrainJobSchema().dump(train_job_list, many=True)
        return {
            "message": "请求成功",
            "result": result,
            "count": count,
        }, 200

    @parse({
        "model_name": fields.String(required=True),
        "model_desc": fields.String(missing=""),
        "doc_type_id": fields.Integer(required=True),
        "model_train_config": fields.Dict(required=True),
        "mark_job_ids": fields.List(fields.Integer(), missing=[]),
        "custom_id": fields.Integer(missing=0),
    })
    def post(self: Resource, args: Dict[str,
                                        Any]) -> Tuple[Dict[str, Any], int]:
        train_job = ModelService().create_classify_train_job_by_doc_type_id(
            doc_type_id=args["doc_type_id"],
            train_job_name=args["model_name"],
            train_job_desc=args["model_desc"],
            train_config=args["model_train_config"],
            mark_job_ids=args["mark_job_ids"],
            custom_id=args['custom_id'])
        result = TrainJobSchema().dump(train_job)
        return {"message": "创建成功", "result": result}, 201
class CustomAlgorithmSchema(Schema):
    custom_id = fields.Integer(attribute="custom_algorithm_id")
    custom_ip = fields.String(attribute="custom_algorithm_ip")
    custom_port = fields.Integer(attribute="custom_algorithm_predict_port")
    custom_evaluate_port = fields.Integer(
        attribute="custom_algorithm_evaluate_port")
    custom_name = fields.String(attribute="custom_algorithm_name")
    custom_id_name = fields.String(attribute="custom_algorithm_alias")
    custom_desc = fields.String(attribute="custom_algorithm_desc")
    custom_type = fields.Function(
        lambda obj: "ner"
        if obj.nlp_task_id == NlpTaskEnum.extract and obj.preprocess.get(
            "split_by_sentence", False) else NlpTaskEnum(obj.nlp_task_id).name)
    custom_state = fields.Function(
        lambda obj: StatusEnum(obj.custom_algorithm_status).name)
    custom_config = fields.String(attribute="custom_algorithm_config")
    created_time = fields.DateTime()
    preprocess = fields.Dict()
示例#13
0
class UpdateModelTrainResource(Resource):
    @parse({
        "model_version": fields.String(required=True),
        "check_train_terms": fields.Boolean(required=True),
        "model_train_state": fields.String(),
        "model_train_result": fields.Dict(),
        "model_type": fields.String(required=True,
                                    validate=lambda x: x in ('extract', 'classify', 'relation', 'wordseg'))
    })
    def put(self, args):
        """
        修改模型的状态
        """
        update_params = {}
        if args.get("model_train_state"):
            # 后端返回结果转换,失败时后端目前还返回failed
            update_params.update(train_status=status_str2int_mapper()[args["model_train_state"]])
        train_task = ModelTrainService().update_train_task_by_model_version(model_version=args["model_version"], is_check_train_terms=args["check_train_terms"], args=update_params)
        result = TrainTaskSchema().dump(train_task)
        return {
                   "message": "更新成功",
                   "result": result,
               }, 201
class ClassifyDocRuleSchema(Schema):  # type: ignore
    id = fields.Integer(attribute="classify_rule_id")
    rule_type = fields.String()
    rule_content = fields.Dict()
    doc_term_id = fields.Integer()
    state = fields.Integer(attribute="is_active")
示例#15
0
class ModelTrainItemResource(Resource):
    @parse({
        "model_type": fields.String(required=True, validate=lambda x: x in ("extract", "classify", "relation", "wordseg"))
    })
    def get(
            self: Resource,
            args: typing.Dict,
            model_id: int,
            model_train_id: int
    ) -> typing.Tuple[typing.Dict, int]:
        """
        获取单条模型训练记录
        """
        # get single task task by id
        train_task = ModelTrainService().get_train_task_by_id(train_task_id=model_train_id)
        result = TrainTaskSchema().dump(train_task)

        # add extra algorithm information for extract and relation.
        if args["model_type"] in ["extract", "relation"]:
            result = ModelTrainService().add_algo_dict_for_extract_relation(result)
        return {
                   "message": "请求成功",
                   "result": result,
               }, 200

    @parse({
        "model_train_state": fields.String(),
        "model_train_result": fields.Dict(),
        "check_train_terms": fields.Boolean(missing=False),
        "model_type": fields.String(required=True, validate=lambda x: x in ("extract", "classify", "relation", "wordseg"))
    })
    def patch(
            self: Resource,
            args: typing.Dict,
            model_id: int,
            model_train_id: int
    ) -> typing.Tuple[typing.Dict, int]:
        """
        修改模型的状态和结果
        """
        update_params = {}
        if args.get("model_train_state"): # 这里不考虑model_train_result因为新的表结构里没有这个列了
            update_params.update(train_status=status_str2int_mapper()[args["model_train_state"]])
        train_task = ModelTrainService().update_train_task_by_id(train_job_id=model_id, train_task_id=model_train_id,
                                                                 is_check_train_terms=args["check_train_terms"], model_type = args["model_type"],
                                                                 args=update_params)
        result = TrainTaskSchema().dump(train_task)
        return {
                   "message": "更新成功",
                   "result": result,
               }, 200

    @parse({
        "model_type": fields.String(required=True, validate=lambda x: x in ("extract", "classify"))
    })
    def delete(
            self: Resource,
            args: typing.Dict,
            model_id: int,
            model_train_id: int
    ) -> typing.Tuple[typing.Dict, int]:
        """
        删除模型
        """
        ModelTrainService().delete_train_task_by_id(train_task_id=model_train_id)
        return {
                   "message": "删除成功",
               }, 200
示例#16
0
class ModelEvaluateItemResource(Resource):
    @parse({
        "model_type":
        fields.String(required=True,
                      validate=lambda x: x in
                      ('extract', 'classify', 'relation', 'wordseg'))
    })
    def get(self: Resource, args: typing.Dict, model_id: int,
            model_evaluate_id: int) -> typing.Tuple[typing.Dict, int]:
        """
        获取单条模型评估记录
        """
        evaluate_task = ModelEvaluateService().get_evaluate_task_by_id(
            model_evaluate_id)
        result = EvaluateTaskSchema().dump(evaluate_task)
        return {
            "message": "请求成功",
            "result": result,
        }, 200

    @parse({
        "model_evaluate_name":
        fields.String(),
        "model_evaluate_desc":
        fields.String(),
        "model_evaluate_state":
        fields.String(),
        "model_evaluate_result":
        fields.Dict(),
        "model_type":
        fields.String(required=True,
                      validate=lambda x: x in
                      ('extract', 'classify', 'relation', 'wordseg'))
    })
    def patch(self: Resource, args: typing.Dict, model_id: int,
              model_evaluate_id: int) -> typing.Tuple[typing.Dict, int]:
        """
        更新一条评估记录
        """
        update_params = {}
        if args.get("model_evaluate_state"):
            update_params.update(evaluate_task_status=status_str2int_mapper()[
                args["model_evaluate_state"]])
        if args.get("model_evaluate_result"):
            update_params.update(
                evaluate_task_result=args["model_evaluate_result"])
        if args.get("model_evaluate_name"):
            update_params.update(
                evaluate_task_name=args["model_evaluate_name"])
        if args.get("model_evaluate_desc"):
            update_params.update(
                evaluate_task_desc=args["model_evaluate_desc"])
        evaluate_task = ModelEvaluateService().update_evaluate_task_by_id(
            evaluate_task_id=model_evaluate_id, args=update_params)
        result = EvaluateTaskSchema().dump(evaluate_task)
        return {
            "message": "更新成功",
            "result": result,
        }, 200

    @parse({
        "model_type":
        fields.String(required=True,
                      validate=lambda x: x in
                      ('extract', 'classify', 'relation', 'wordseg'))
    })
    def delete(self: Resource, args: typing.Dict, model_id: int,
               model_evaluate_id: int) -> typing.Tuple[typing.Dict, int]:
        """
        删除一条评估记录
        """
        ModelEvaluateService().delete_evaluate_task_by_id(
            evaluate_task_id=model_evaluate_id)
        return {
            "message": "删除成功",
        }, 200