示例#1
0
def evaluate(model, orig_model, logger, metrics, data_processor, hps):
    model.eval()
    orig_model.eval()
    if hps.prior:
        _print_keys = dict(l="loss", bpd="bpd")
    else:
        _print_keys = dict(l="loss", rl="recons_loss", sl="spectral_loss")

    with t.no_grad():
        for i, x in logger.get_range(data_processor.test_loader):
            if isinstance(x, (tuple, list)):
                x, y = x
            else:
                y = None

            x = x.to('cuda', non_blocking=True)
            if y is not None:
                y = y.to('cuda', non_blocking=True)

            x_in = x = audio_preprocess(x, hps)
            log_input_output = (i == 0)

            if hps.prior:
                forw_kwargs = dict(y=y, fp16=hps.fp16, decode=log_input_output)
            else:
                forw_kwargs = dict(loss_fn=hps.loss_fn, hps=hps)

            x_out, loss, _metrics = model(x, **forw_kwargs)

            # Logging
            for key, val in _metrics.items():
                _metrics[key] = val.item()
            _metrics["loss"] = loss = loss.item(
            )  # Make sure to call to free graph

            # Average and log
            for key, val in _metrics.items():
                _metrics[key] = metrics.update(f"test_{key}", val, x.shape[0])

            with t.no_grad():
                if log_input_output:
                    log_inputs(orig_model, logger, x_in, y, x_out, hps)

            logger.set_postfix(**{
                print_key: _metrics[key]
                for print_key, key in _print_keys.items()
            })

    for key, val in _metrics.items():
        logger.add_scalar(f"test_{key}", metrics.avg(f"test_{key}"))

    logger.close_range()
    return {key: metrics.avg(f"test_{key}") for key in _metrics.keys()}
示例#2
0
def test_dataset_loader():
    from tqdm import tqdm
    from torch.utils.data import DataLoader
    from torch.utils.data.distributed import DistributedSampler
    from app.jukebox.utils.audio_utils import audio_preprocess, audio_postprocess
    from app.jukebox.hparams import setup_hparams
    from app.jukebox.data.files_dataset import FilesAudioDataset
    hps = setup_hparams("teeny", {})
    hps.sr = 22050  # 44100
    hps.hop_length = 512
    hps.labels = False
    hps.channels = 2
    hps.aug_shift = False
    hps.bs = 2
    hps.nworkers = 2 # Getting 20 it/s with 2 workers, 10 it/s with 1 worker
    print(hps)
    dataset = hps.dataset
    root = hps.root
    from tensorboardX import SummaryWriter
    sr = {22050: '22k', 44100: '44k', 48000: '48k'}[hps.sr]
    writer = SummaryWriter(f'{root}/{dataset}/logs/{sr}/logs')
    dataset = FilesAudioDataset(hps)
    print("Length of dataset", len(dataset))

    # Torch Loader
    collate_fn = lambda batch: t.stack([t.from_numpy(b) for b in batch], 0)
    sampler = DistributedSampler(dataset)
    train_loader = DataLoader(dataset, batch_size=hps.bs, num_workers=hps.nworkers, pin_memory=False, sampler=sampler,
                              drop_last=True, collate_fn=collate_fn)

    dist.barrier()
    sampler.set_epoch(0)
    for i, x in enumerate(tqdm(train_loader)):
        x = x.to('cuda', non_blocking=True)
        for j, aud in enumerate(x):
            writer.add_audio('in_' + str(i*hps.bs + j), aud, 1, hps.sr)
        print("Wrote in")
        x = audio_preprocess(x, hps)
        x = audio_postprocess(x, hps)
        for j, aud in enumerate(x):
            writer.add_audio('out_' + str(i*hps.bs + j), aud, 1, hps.sr)
        print("Wrote out")
        dist.barrier()
        break
示例#3
0
def train(model, orig_model, opt, shd, scalar, ema, logger, metrics,
          data_processor, hps):
    model.train()
    orig_model.train()
    if hps.prior:
        _print_keys = dict(l="loss",
                           bpd="bpd",
                           gn="gn",
                           g_l="gen_loss",
                           p_l="prime_loss")
    else:
        _print_keys = dict(l="loss",
                           sl="spectral_loss",
                           rl="recons_loss",
                           e="entropy",
                           u="usage",
                           uc="used_curr",
                           gn="gn",
                           pn="pn",
                           dk="dk")

    for i, x in logger.get_range(data_processor.train_loader):
        if isinstance(x, (tuple, list)):
            x, y = x
        else:
            y = None

        x = x.to('cuda', non_blocking=True)
        if y is not None:
            y = y.to('cuda', non_blocking=True)

        x_in = x = audio_preprocess(x, hps)
        log_input_output = (logger.iters % hps.save_iters == 0)

        if hps.prior:
            forw_kwargs = dict(y=y, fp16=hps.fp16, decode=log_input_output)
        else:
            forw_kwargs = dict(loss_fn=hps.loss_fn, hps=hps)

        # Forward
        x_out, loss, _metrics = model(x, **forw_kwargs)

        # Backward
        loss, scale, grad_norm, overflow_loss, overflow_grad = backward(
            loss=loss,
            params=list(model.parameters()),
            scalar=scalar,
            fp16=hps.fp16,
            logger=logger)
        # Skip step if overflow
        grad_norm = allreduce(grad_norm, op=dist.ReduceOp.MAX)
        if overflow_loss or overflow_grad or grad_norm > hps.ignore_grad_norm > 0:
            zero_grad(orig_model)
            continue

        # Step opt. Divide by scale to include clipping and fp16 scaling
        logger.step()
        opt.step(scale=clipped_grad_scale(grad_norm, hps.clip, scale))
        zero_grad(orig_model)
        lr = hps.lr if shd is None else shd.get_lr()[0]
        if shd is not None: shd.step()
        if ema is not None: ema.step()
        next_lr = hps.lr if shd is None else shd.get_lr()[0]
        finished_training = (next_lr == 0.0)

        # Logging
        for key, val in _metrics.items():
            _metrics[key] = val.item()
        _metrics["loss"] = loss = loss.item(
        ) * hps.iters_before_update  # Make sure to call to free graph
        _metrics["gn"] = grad_norm
        _metrics["lr"] = lr
        _metrics["lg_loss_scale"] = np.log2(scale)

        # Average and log
        for key, val in _metrics.items():
            _metrics[key] = metrics.update(key, val, x.shape[0])
            if logger.iters % hps.log_steps == 0:
                logger.add_scalar(key, _metrics[key])

        # Save checkpoint
        with t.no_grad():
            if hps.save and (logger.iters % hps.save_iters == 1
                             or finished_training):
                if ema is not None: ema.swap()
                orig_model.eval()
                name = 'latest' if hps.prior else f'step_{logger.iters}'
                if dist.get_rank() % 8 == 0:
                    save_checkpoint(logger, name, orig_model, opt,
                                    dict(step=logger.iters), hps)
                orig_model.train()
                if ema is not None: ema.swap()

        # Sample
        with t.no_grad():
            if (logger.iters % 12000) in list(
                    range(1,
                          1 + hps.iters_before_update)) or finished_training:
                if hps.prior:
                    sample_prior(orig_model, ema, logger, x_in, y, hps)

        # Input/Output
        with t.no_grad():
            if log_input_output:
                log_inputs(orig_model, logger, x_in, y, x_out, hps)

        logger.set_postfix(**{
            print_key: _metrics[key]
            for print_key, key in _print_keys.items()
        })
        if finished_training:
            dist.barrier()
            exit()
    logger.close_range()
    return {key: metrics.avg(key) for key in _metrics.keys()}