def cluster(self, data, n_clusters): n, d = shape(data) locations = zeros((self.n_particles, n_clusters, d)) for i in range(self.n_particles): for j in range(n_clusters): locations[i, j, :] = copy(data[randint(n), :]) # Initialize cluster centers to random datapoints bestlocations = copy(locations) velocities = zeros((self.n_particles, n_clusters, d)) bestscores = [score(data, centroids=locations[i, :, :], norm=self.norm) for i in range(self.n_particles)] sbestlocation = copy(locations[argmin(bestscores), :, :]) sbestscore = min(bestscores) for i in range(self.n_iterations): if i % self.printfreq == 0: print "Particle swarm iteration", i, "best score:", sbestscore for j in range(self.n_particles): r = rand(n_clusters, d) s = rand(n_clusters, d) velocities[j, :, :] = (self.w * velocities[j, :, :]) + \ (self.c1 * r * (bestlocations[j, :, :] - locations[j, :, :])) + \ (self.c2 * s * (sbestlocation - locations[j, :, :])) locations[j, :, :] = locations[j, :, :] + velocities[j, :, :] currentscore = score(data, centroids=locations[j, :, :], norm=self.norm) if currentscore < bestscores[j]: bestscores[j] = currentscore bestlocations[j, :, :] = locations[j, :, :] if currentscore < sbestscore: sbestscore = currentscore sbestlocation = copy(locations[j, :, :]) return getlabels(data, centroids=sbestlocation, norm=self.norm)
def cluster(self, data, n_clusters): n_samples, _ = shape(data) assert self.n_ants < n_samples, "number of ants must be lower than number of samples" bestscore = float('inf') bestcentroids = None bestweights = None pheromone = self.t0 * ones((n_samples, n_clusters)) for it in range(self.n_iter): for _ in range(self.n_ants): # memory = -1 * ones(n_samples, dtype='int') weights = zeros((n_samples, n_clusters), dtype='bool') centroids = array([data[randint(n_samples), :] for _ in range(n_clusters)], copy=True) for i in permutation(n_samples): scores = self.centroidscore(data[i, :], centroids, pheromone[i, :], self.beta) if randfloat() < self.q0: j = argmax(scores) # exploit else: j = choice(n_clusters, p=(scores / sum(scores))) # explore weights[i, j] = True centroids[j, :] = average(data, axis=0, weights=weights[:, j]) currentscore = score(data, centroids=centroids, norm=self.beta) if currentscore < bestscore: bestscore = currentscore bestcentroids = copy(centroids) bestweights = copy(weights) pheromone = (self.ro * pheromone) + ((1.0 / bestscore) * bestweights) if it % self.printfreq == 0: print "Ant Colony iteration", it, "best score:", bestscore return getlabels(data, centroids=bestcentroids, norm=self.beta)
def cluster(self, data, n_clusters): n, d = shape(data) locations = zeros((self.n_bees, n_clusters, d)) for i in range(self.n_bees): for j in range(n_clusters): locations[i, j, :] = copy(data[randint(n), :]) # Initialize cluster centers to random datapoints currentscore = array([score(data, centroids=locations[i, :, :], norm=self.norm) for i in range(self.n_bees)]) changecount = zeros(self.n_bees) bestlocation = copy(locations[argmin(currentscore), :, :]) bestscore = min(currentscore) for it in range(self.n_iter): if it % self.printfreq == 0: print "Artificial Bee iteration", it, "best score:", bestscore for k in range(self.n_bees): newcentroids, newscore = self.getnewcentroids(data, locations, k) locations, currentscore, bestscore, bestlocation, changecount = self.update( k, locations, newscore, newcentroids, currentscore, bestscore, bestlocation, changecount, True) for _ in range(self.n_bees): k = choice(self.n_bees, p=currentscore/sum(currentscore)) newcentroids, newscore = self.getnewcentroids(data, locations, k) locations, currentscore, bestscore, bestlocation, changecount = self.update( k, locations, newscore, newcentroids, currentscore, bestscore, bestlocation, changecount, False) for k in nonzero(changecount >= self.limit): newcentroids = array([data[randint(n), :] for _ in range(n_clusters)], copy=True) newscore = score(data, centroids=newcentroids, norm=self.norm) locations, currentscore, bestscore, bestlocation, changecount = self.update( k, locations, newscore, newcentroids, currentscore, bestscore, bestlocation, changecount, False) return getlabels(data, centroids=bestlocation, norm=self.norm)