def main():

    m = 5
    fast_times = []
    targeted_times = []
    x = range(10, 1000, 10)

    for n in x:
        graph = upa(n, m)
        start_time = timeit.default_timer()
        fast_targeted_order(graph)
        end_time = timeit.default_timer() - start_time
        fast_times.append(end_time)

        start_time = timeit.default_timer()
        targeted_order(graph)
        end_time = timeit.default_timer() - start_time
        targeted_times.append(end_time)

    print fast_times
    print targeted_times



    plt.xlabel('Number of Nodes')
    plt.ylabel('Running Time in seconds')
    plt.title('Fast Targeted vs Targeted Order functions runtime (Desktop Python)')
    plt.plot(x, fast_times, '-b', label='Fast Targeted')
    plt.plot(x, targeted_times, '-r', label='Targeted Order')
    plt.legend(loc='upper left')
    plt.grid(True)
    plt.savefig('targeted.png')
    plt.show()
示例#2
0
def main():

    net_graph = network_graph()
    net_size = sum([len(x) for x in net_graph.itervalues()])
    print net_size/2

    # net_attack = random_order(net_graph)
    net_resilience = np.array(calculate_resilience(net_graph))
    print 'net: ', sum([len(x) for x in net_graph.itervalues()])/len(net_graph)

    e_graph = er_graph(1239, 0.0020)
    size = sum([len(x) for x in e_graph.itervalues()])
    print size/2
    print e_graph

    # e_attack = random_order(e_graph)
    e_resilience = np.array(calculate_resilience(e_graph))
    print 'e: ', sum([len(x) for x in e_graph.itervalues()])/len(e_graph)

    upa_graph = upa(1239, 3)
    #print upa_graph
    upa_size = sum([len(x) for x in upa_graph.itervalues()])
    print upa_size/2

    upa_resilience = np.array(calculate_resilience(upa_graph))
    print 'upa: ', sum([len(x) for x in upa_graph.itervalues()])/len(upa_graph)

    x = np.array(range(max(len(net_resilience), len(e_resilience),
                       len(upa_resilience))))

    plt.xlabel('Number of nodes removed')
    plt.ylabel('Size of the largest connected component')
    plt.title('Resilience of computer networks under attack')
    plt.plot(x, net_resilience, '-b', label='Network')
    plt.plot(x, e_resilience, '-r', label='ER | p = 0.0020')
    plt.plot(x, upa_resilience, '-y', label='UPA | m = 3')
    plt.legend(loc='upper right')
    plt.grid(True)
    plt.savefig('question4.png')
    plt.show()