def classifiers(self, usersub): classifiers = {} if usersub.is_trained: classifiers['feeds'] = list(MClassifierFeed.objects(user_id=self.user_id, feed_id=self.feed_id, social_user_id=0)) classifiers['authors'] = list(MClassifierAuthor.objects(user_id=self.user_id, feed_id=self.feed_id)) classifiers['titles'] = list(MClassifierTitle.objects(user_id=self.user_id, feed_id=self.feed_id)) classifiers['tags'] = list(MClassifierTag.objects(user_id=self.user_id, feed_id=self.feed_id)) return classifiers
def sort_by_feed(classifiers): feed_classifiers = defaultdict(list) for classifier in classifiers: feed_classifiers[classifier.feed_id].append(classifier) return feed_classifiers classifiers = {} try: classifier_feeds = sort_by_feed( MClassifierFeed.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_authors = sort_by_feed( MClassifierAuthor.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_titles = sort_by_feed( MClassifierTitle.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_tags = sort_by_feed( MClassifierTag.objects(user_id=user.pk, feed_id__in=found_feed_ids)) except OperationFailure: logging.info(" ***> Classifiers failure") else: for feed_id in found_feed_ids: classifiers[feed_id] = get_classifiers_for_user( user, feed_id, classifier_feeds[feed_id], classifier_authors[feed_id], classifier_titles[feed_id], classifier_tags[feed_id]) # Just need to format stories for story in stories: story_date = localtime_for_timezone(story['story_date'],
def load_river_stories(request): limit = 18 offset = 0 start = datetime.datetime.utcnow() user = get_user(request) feed_ids = [int(feed_id) for feed_id in request.REQUEST.getlist('feeds') if feed_id] original_feed_ids = list(feed_ids) page = int(request.REQUEST.get('page', 1)) read_stories_count = int(request.REQUEST.get('read_stories_count', 0)) new_flag = request.REQUEST.get('new_flag', False) bottom_delta = datetime.timedelta(days=settings.DAYS_OF_UNREAD) if not feed_ids: logging.user(request, "~FCLoading empty river stories: page %s" % (page)) return dict(stories=[]) # Fetch all stories at and before the page number. # Not a single page, because reading stories can move them up in the unread order. # `read_stories_count` is an optimization, works best when all 25 stories before have been read. limit = limit * page - read_stories_count # Read stories to exclude read_stories = MUserStory.objects(user_id=user.pk, feed_id__in=feed_ids).only('story_id') read_stories = [rs.story_id for rs in read_stories] # Determine mark_as_read dates for all feeds to ignore all stories before this date. # max_feed_count = 0 feed_counts = {} feed_last_reads = {} for feed_id in feed_ids: try: usersub = UserSubscription.objects.get(feed__pk=feed_id, user=user) except UserSubscription.DoesNotExist: continue if not usersub: continue feed_counts[feed_id] = (usersub.unread_count_negative * 1 + usersub.unread_count_neutral * 10 + usersub.unread_count_positive * 20) # if feed_counts[feed_id] > max_feed_count: # max_feed_count = feed_counts[feed_id] feed_last_reads[feed_id] = int(time.mktime(usersub.mark_read_date.timetuple())) feed_counts = sorted(feed_counts.items(), key=itemgetter(1))[:50] feed_ids = [f[0] for f in feed_counts] feed_last_reads = dict([(str(feed_id), feed_last_reads[feed_id]) for feed_id in feed_ids if feed_id in feed_last_reads]) feed_counts = dict(feed_counts) # After excluding read stories, all that's left are stories # past the mark_read_date. Everything returned is guaranteed to be unread. mstories = MStory.objects( story_guid__nin=read_stories, story_feed_id__in=feed_ids, # story_date__gte=start - bottom_delta ).map_reduce("""function() { var d = feed_last_reads[this[~story_feed_id]]; if (this[~story_date].getTime()/1000 > d) { emit(this[~id], this); } }""", """function(key, values) { return values[0]; }""", output='inline', scope={ 'feed_last_reads': feed_last_reads } ) mstories = [story.value for story in mstories if story and story.value] mstories = sorted(mstories, cmp=lambda x, y: cmp(story_score(y, bottom_delta), story_score(x, bottom_delta))) # story_feed_counts = defaultdict(int) # mstories_pruned = [] # for story in mstories: # print story['story_title'], story_feed_counts[story['story_feed_id']] # if story_feed_counts[story['story_feed_id']] >= 3: continue # mstories_pruned.append(story) # story_feed_counts[story['story_feed_id']] += 1 stories = [] for i, story in enumerate(mstories): if i < offset: continue if i >= offset + limit: break stories.append(bunch(story)) stories = Feed.format_stories(stories) found_feed_ids = list(set([story['story_feed_id'] for story in stories])) # Find starred stories starred_stories = MStarredStory.objects( user_id=user.pk, story_feed_id__in=found_feed_ids ).only('story_guid', 'starred_date') starred_stories = dict([(story.story_guid, story.starred_date) for story in starred_stories]) # Intelligence classifiers for all feeds involved def sort_by_feed(classifiers): feed_classifiers = defaultdict(list) for classifier in classifiers: feed_classifiers[classifier.feed_id].append(classifier) return feed_classifiers classifier_feeds = sort_by_feed(MClassifierFeed.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_authors = sort_by_feed(MClassifierAuthor.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_titles = sort_by_feed(MClassifierTitle.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_tags = sort_by_feed(MClassifierTag.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifiers = {} for feed_id in found_feed_ids: classifiers[feed_id] = get_classifiers_for_user(user, feed_id, classifier_feeds[feed_id], classifier_authors[feed_id], classifier_titles[feed_id], classifier_tags[feed_id]) # Just need to format stories for story in stories: story_date = localtime_for_timezone(story['story_date'], user.profile.timezone) now = localtime_for_timezone(datetime.datetime.now(), user.profile.timezone) story['short_parsed_date'] = format_story_link_date__short(story_date, now) story['long_parsed_date'] = format_story_link_date__long(story_date, now) story['read_status'] = 0 if story['id'] in starred_stories: story['starred'] = True starred_date = localtime_for_timezone(starred_stories[story['id']], user.profile.timezone) story['starred_date'] = format_story_link_date__long(starred_date, now) story['intelligence'] = { 'feed': apply_classifier_feeds(classifier_feeds[story['story_feed_id']], story['story_feed_id']), 'author': apply_classifier_authors(classifier_authors[story['story_feed_id']], story), 'tags': apply_classifier_tags(classifier_tags[story['story_feed_id']], story), 'title': apply_classifier_titles(classifier_titles[story['story_feed_id']], story), } diff = datetime.datetime.utcnow() - start timediff = float("%s.%.2s" % (diff.seconds, (diff.microseconds / 1000))) logging.user(request, "~FCLoading river stories: page %s - ~SB%s/%s " "stories ~SN(%s/%s/%s feeds) ~FB(%s seconds)" % (page, len(stories), len(mstories), len(found_feed_ids), len(feed_ids), len(original_feed_ids), timediff)) if new_flag: return dict(stories=stories, classifiers=classifiers) else: logging.user(request, "~BR~FCNo new flag on river") return dict(stories=stories)
def api_shared_story(request): user = request.user body = request.body_json after = body.get('after', None) before = body.get('before', None) limit = body.get('limit', 50) fields = body.get('triggerFields') blurblog_user = fields['blurblog_user'] entries = [] if isinstance(blurblog_user, int) or blurblog_user.isdigit(): social_user_ids = [int(blurblog_user)] elif blurblog_user == "all": socialsubs = MSocialSubscription.objects.filter(user_id=user.pk) social_user_ids = [ss.subscription_user_id for ss in socialsubs] mstories = MSharedStory.objects( user_id__in=social_user_ids ).order_by('-shared_date')[:limit] stories = Feed.format_stories(mstories) found_feed_ids = list(set([story['story_feed_id'] for story in stories])) share_user_ids = list(set([story['user_id'] for story in stories])) users = dict([(u.pk, u.username) for u in User.objects.filter(pk__in=share_user_ids).only('pk', 'username')]) feeds = dict([(f.pk, { "title": f.feed_title, "website": f.feed_link, "address": f.feed_address, }) for f in Feed.objects.filter(pk__in=found_feed_ids)]) classifier_feeds = list(MClassifierFeed.objects(user_id=user.pk, social_user_id__in=social_user_ids)) classifier_authors = list(MClassifierAuthor.objects(user_id=user.pk, social_user_id__in=social_user_ids)) classifier_titles = list(MClassifierTitle.objects(user_id=user.pk, social_user_id__in=social_user_ids)) classifier_tags = list(MClassifierTag.objects(user_id=user.pk, social_user_id__in=social_user_ids)) # Merge with feed specific classifiers classifier_feeds = classifier_feeds + list(MClassifierFeed.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_authors = classifier_authors + list(MClassifierAuthor.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_titles = classifier_titles + list(MClassifierTitle.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_tags = classifier_tags + list(MClassifierTag.objects(user_id=user.pk, feed_id__in=found_feed_ids)) for story in stories: if before and int(story['shared_date'].strftime("%s")) > before: continue if after and int(story['shared_date'].strftime("%s")) < after: continue score = compute_story_score(story, classifier_titles=classifier_titles, classifier_authors=classifier_authors, classifier_tags=classifier_tags, classifier_feeds=classifier_feeds) if score < 0: continue feed = feeds.get(story['story_feed_id'], None) entries.append({ "StoryTitle": story['story_title'], "StoryContent": story['story_content'], "StoryURL": story['story_permalink'], "StoryAuthor": story['story_authors'], "PublishedAt": story['story_date'].strftime("%Y-%m-%dT%H:%M:%SZ"), "StoryScore": score, "Comments": story['comments'], "Username": users.get(story['user_id']), "SharedAt": story['shared_date'].strftime("%Y-%m-%dT%H:%M:%SZ"), "Site": feed and feed['title'], "SiteURL": feed and feed['website'], "SiteRSS": feed and feed['address'], "ifttt": { "id": story['story_hash'], "timestamp": int(story['shared_date'].strftime("%s")) }, }) if after: entries = sorted(entries, key=lambda s: s['ifttt']['timestamp']) logging.user(request, "~FMChecking shared stories from ~SB~FCIFTTT~SN~FM: ~SB~FM%s~FM~SN - ~SB%s~SN stories" % (blurblog_user, len(entries))) return {"data": entries}
starred_stories = MStarredStory.objects( user_id=user.pk, story_feed_id__in=found_feed_ids ).only('story_guid', 'starred_date') starred_stories = dict([(story.story_guid, story.starred_date) for story in starred_stories]) # Intelligence classifiers for all feeds involved def sort_by_feed(classifiers): feed_classifiers = defaultdict(list) for classifier in classifiers: feed_classifiers[classifier.feed_id].append(classifier) return feed_classifiers classifier_feeds = sort_by_feed(MClassifierFeed.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_authors = sort_by_feed(MClassifierAuthor.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_titles = sort_by_feed(MClassifierTitle.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_tags = sort_by_feed(MClassifierTag.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifiers = {} for feed_id in found_feed_ids: classifiers[feed_id] = get_classifiers_for_user(user, feed_id, classifier_feeds[feed_id], classifier_authors[feed_id], classifier_titles[feed_id], classifier_tags[feed_id]) # Just need to format stories for story in stories: story_date = localtime_for_timezone(story['story_date'], user.profile.timezone) now = localtime_for_timezone(datetime.datetime.now(), user.profile.timezone) story['short_parsed_date'] = format_story_link_date__short(story_date, now) story['long_parsed_date'] = format_story_link_date__long(story_date, now)
def calculate_feed_scores(self, silent=False, stories=None, force=False): # now = datetime.datetime.strptime("2009-07-06 22:30:03", "%Y-%m-%d %H:%M:%S") now = datetime.datetime.now() UNREAD_CUTOFF = now - datetime.timedelta(days=settings.DAYS_OF_UNREAD) if self.user.profile.last_seen_on < UNREAD_CUTOFF and not force: # if not silent: # logging.info(' ---> [%s] SKIPPING Computing scores: %s (1 week+)' % (self.user, self.feed)) return # if not self.feed.fetched_once: # if not silent: # logging.info(' ---> [%s] NOT Computing scores: %s' % (self.user, self.feed)) # self.needs_unread_recalc = False # self.save() # return feed_scores = dict(negative=0, neutral=0, positive=0) # Two weeks in age. If mark_read_date is older, mark old stories as read. date_delta = UNREAD_CUTOFF if date_delta < self.mark_read_date: date_delta = self.mark_read_date else: self.mark_read_date = date_delta if not stories: stories = cache.get('S:%s' % self.feed_id) unread_story_hashes = self.get_stories(read_filter='unread', limit=500, hashes_only=True) if not stories: stories_db = MStory.objects(story_hash__in=unread_story_hashes) stories = Feed.format_stories(stories_db, self.feed_id) oldest_unread_story_date = now unread_stories = [] for story in stories: if story['story_date'] < date_delta: continue if story['story_hash'] in unread_story_hashes: unread_stories.append(story) if story['story_date'] < oldest_unread_story_date: oldest_unread_story_date = story['story_date'] # if not silent: # logging.info(' ---> [%s] Format stories: %s' % (self.user, datetime.datetime.now() - now)) classifier_feeds = list(MClassifierFeed.objects(user_id=self.user_id, feed_id=self.feed_id, social_user_id=0)) classifier_authors = list(MClassifierAuthor.objects(user_id=self.user_id, feed_id=self.feed_id)) classifier_titles = list(MClassifierTitle.objects(user_id=self.user_id, feed_id=self.feed_id)) classifier_tags = list(MClassifierTag.objects(user_id=self.user_id, feed_id=self.feed_id)) # if not silent: # logging.info(' ---> [%s] Classifiers: %s (%s)' % (self.user, datetime.datetime.now() - now, classifier_feeds.count() + classifier_authors.count() + classifier_tags.count() + classifier_titles.count())) scores = { 'feed': apply_classifier_feeds(classifier_feeds, self.feed), } for story in unread_stories: scores.update({ 'author' : apply_classifier_authors(classifier_authors, story), 'tags' : apply_classifier_tags(classifier_tags, story), 'title' : apply_classifier_titles(classifier_titles, story), }) max_score = max(scores['author'], scores['tags'], scores['title']) min_score = min(scores['author'], scores['tags'], scores['title']) if max_score > 0: feed_scores['positive'] += 1 elif min_score < 0: feed_scores['negative'] += 1 else: if scores['feed'] > 0: feed_scores['positive'] += 1 elif scores['feed'] < 0: feed_scores['negative'] += 1 else: feed_scores['neutral'] += 1 # if not silent: # logging.info(' ---> [%s] End classifiers: %s' % (self.user, datetime.datetime.now() - now)) self.unread_count_positive = feed_scores['positive'] self.unread_count_neutral = feed_scores['neutral'] self.unread_count_negative = feed_scores['negative'] self.unread_count_updated = datetime.datetime.now() self.oldest_unread_story_date = oldest_unread_story_date self.needs_unread_recalc = False self.save() if (self.unread_count_positive == 0 and self.unread_count_neutral == 0): self.mark_feed_read() if not silent: logging.user(self.user, '~FC~SNComputing scores: %s (~SB%s~SN/~SB%s~SN/~SB%s~SN)' % (self.feed, feed_scores['negative'], feed_scores['neutral'], feed_scores['positive'])) return self
def load_single_feed(request, feed_id): start = time.time() user = get_user(request) offset = int(request.REQUEST.get('offset', 0)) limit = int(request.REQUEST.get('limit', 12)) page = int(request.REQUEST.get('page', 1)) dupe_feed_id = None userstories_db = None if page: offset = limit * (page-1) if not feed_id: raise Http404 try: feed = Feed.objects.get(id=feed_id) except Feed.DoesNotExist: feed_address = request.REQUEST.get('feed_address') dupe_feed = DuplicateFeed.objects.filter(duplicate_address=feed_address) if dupe_feed: feed = dupe_feed[0].feed dupe_feed_id = feed_id else: raise Http404 stories = feed.get_stories(offset, limit) # Get intelligence classifier for user classifier_feeds = list(MClassifierFeed.objects(user_id=user.pk, feed_id=feed_id)) classifier_authors = list(MClassifierAuthor.objects(user_id=user.pk, feed_id=feed_id)) classifier_titles = list(MClassifierTitle.objects(user_id=user.pk, feed_id=feed_id)) classifier_tags = list(MClassifierTag.objects(user_id=user.pk, feed_id=feed_id)) checkpoint1 = time.time() usersub = UserSubscription.objects.get(user=user, feed=feed) userstories = [] if usersub: userstories_db = MUserStory.objects(user_id=user.pk, feed_id=feed.pk, read_date__gte=usersub.mark_read_date) starred_stories = MStarredStory.objects(user_id=user.pk, story_feed_id=feed_id).only('story_guid', 'starred_date') starred_stories = dict([(story.story_guid, story.starred_date) for story in starred_stories]) for us in userstories_db: if hasattr(us.story, 'story_guid') and isinstance(us.story.story_guid, unicode): userstories.append(us.story.story_guid) elif hasattr(us.story, 'id') and isinstance(us.story.id, unicode): userstories.append(us.story.id) # TODO: Remove me after migration from story.id->guid checkpoint2 = time.time() for story in stories: story_date = localtime_for_timezone(story['story_date'], user.profile.timezone) now = localtime_for_timezone(datetime.datetime.now(), user.profile.timezone) story['short_parsed_date'] = format_story_link_date__short(story_date, now) story['long_parsed_date'] = format_story_link_date__long(story_date, now) if usersub: if story['id'] in userstories: story['read_status'] = 1 elif not story.get('read_status') and story['story_date'] < usersub.mark_read_date: story['read_status'] = 1 elif not story.get('read_status') and story['story_date'] > usersub.last_read_date: story['read_status'] = 0 if story['id'] in starred_stories: story['starred'] = True starred_date = localtime_for_timezone(starred_stories[story['id']], user.profile.timezone) story['starred_date'] = format_story_link_date__long(starred_date, now) else: story['read_status'] = 1 story['intelligence'] = { 'feed': apply_classifier_feeds(classifier_feeds, feed), 'author': apply_classifier_authors(classifier_authors, story), 'tags': apply_classifier_tags(classifier_tags, story), 'title': apply_classifier_titles(classifier_titles, story), } checkpoint3 = time.time() # Intelligence feed_tags = json.decode(feed.data.popular_tags) if feed.data.popular_tags else [] feed_authors = json.decode(feed.data.popular_authors) if feed.data.popular_authors else [] classifiers = get_classifiers_for_user(user, feed_id, classifier_feeds, classifier_authors, classifier_titles, classifier_tags) if usersub: usersub.feed_opens += 1 usersub.save() timediff = time.time()-start last_update = relative_timesince(feed.last_update) logging.user(request.user, "~FYLoading feed: ~SB%s%s ~SN(%.4s seconds)" % ( feed, ('~SN/p%s' % page) if page > 1 else '', timediff)) FeedLoadtime.objects.create(feed=feed, loadtime=timediff) if timediff >= 1: diff1 = checkpoint1-start diff2 = checkpoint2-start diff3 = checkpoint3-start logging.user(request.user, "~FYSlow feed load: ~SB%.4s/%.4s(%s)/%.4s" % ( diff1, diff2, userstories_db and userstories_db.count(), diff3)) data = dict(stories=stories, feed_tags=feed_tags, feed_authors=feed_authors, classifiers=classifiers, last_update=last_update, feed_id=feed.pk) if dupe_feed_id: data['dupe_feed_id'] = dupe_feed_id if not usersub: data.update(feed.canonical()) return data
def api_unread_story(request, trigger_slug=None): user = request.user body = request.body_json after = body.get('after', None) before = body.get('before', None) limit = body.get('limit', 50) fields = body.get('triggerFields') feed_or_folder = fields['feed_or_folder'] entries = [] if isinstance(feed_or_folder, int) or feed_or_folder.isdigit(): feed_id = int(feed_or_folder) try: usersub = UserSubscription.objects.get(user=user, feed_id=feed_id) except UserSubscription.DoesNotExist: return dict(data=[]) found_feed_ids = [feed_id] found_trained_feed_ids = [feed_id] if usersub.is_trained else [] stories = usersub.get_stories(order="newest", read_filter="unread", offset=0, limit=limit, default_cutoff_date=user.profile.unread_cutoff) else: folder_title = feed_or_folder if folder_title == "Top Level": folder_title = " " usf = UserSubscriptionFolders.objects.get(user=user) flat_folders = usf.flatten_folders() feed_ids = None if folder_title != "all": feed_ids = flat_folders.get(folder_title) usersubs = UserSubscription.subs_for_feeds(user.pk, feed_ids=feed_ids, read_filter="unread") feed_ids = [sub.feed_id for sub in usersubs] params = { "user_id": user.pk, "feed_ids": feed_ids, "offset": 0, "limit": limit, "order": "newest", "read_filter": "unread", "usersubs": usersubs, "cutoff_date": user.profile.unread_cutoff, } story_hashes, unread_feed_story_hashes = UserSubscription.feed_stories(**params) mstories = MStory.objects(story_hash__in=story_hashes).order_by('-story_date') stories = Feed.format_stories(mstories) found_feed_ids = list(set([story['story_feed_id'] for story in stories])) trained_feed_ids = [sub.feed_id for sub in usersubs if sub.is_trained] found_trained_feed_ids = list(set(trained_feed_ids) & set(found_feed_ids)) if found_trained_feed_ids: classifier_feeds = list(MClassifierFeed.objects(user_id=user.pk, feed_id__in=found_trained_feed_ids)) classifier_authors = list(MClassifierAuthor.objects(user_id=user.pk, feed_id__in=found_trained_feed_ids)) classifier_titles = list(MClassifierTitle.objects(user_id=user.pk, feed_id__in=found_trained_feed_ids)) classifier_tags = list(MClassifierTag.objects(user_id=user.pk, feed_id__in=found_trained_feed_ids)) feeds = dict([(f.pk, { "title": f.feed_title, "website": f.feed_link, "address": f.feed_address, }) for f in Feed.objects.filter(pk__in=found_feed_ids)]) for story in stories: if before and int(story['story_date'].strftime("%s")) > before: continue if after and int(story['story_date'].strftime("%s")) < after: continue score = 0 if found_trained_feed_ids and story['story_feed_id'] in found_trained_feed_ids: score = compute_story_score(story, classifier_titles=classifier_titles, classifier_authors=classifier_authors, classifier_tags=classifier_tags, classifier_feeds=classifier_feeds) if score < 0: continue if trigger_slug == "new-unread-focus-story" and score < 1: continue feed = feeds.get(story['story_feed_id'], None) entries.append({ "StoryTitle": story['story_title'], "StoryContent": story['story_content'], "StoryURL": story['story_permalink'], "StoryAuthor": story['story_authors'], "PublishedAt": story['story_date'].strftime("%Y-%m-%dT%H:%M:%SZ"), "StoryScore": score, "Site": feed and feed['title'], "SiteURL": feed and feed['website'], "SiteRSS": feed and feed['address'], "meta": { "id": story['story_hash'], "timestamp": int(story['story_date'].strftime("%s")) }, }) if after: entries = sorted(entries, key=lambda s: s['meta']['timestamp']) logging.user(request, "~FYChecking unread%s stories with ~SB~FCIFTTT~SN~FY: ~SB%s~SN - ~SB%s~SN stories" % (" ~SBfocus~SN" if trigger_slug == "new-unread-focus-story" else "", feed_or_folder, len(entries))) return {"data": entries[:limit]}
for story in starred_stories]) except OperationFailure: logging.info(" ***> Starred stories failure") starred_stories = {} # Intelligence classifiers for all feeds involved def sort_by_feed(classifiers): feed_classifiers = defaultdict(list) for classifier in classifiers: feed_classifiers[classifier.feed_id].append(classifier) return feed_classifiers classifiers = {} try: classifier_feeds = sort_by_feed(MClassifierFeed.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_authors = sort_by_feed(MClassifierAuthor.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_titles = sort_by_feed(MClassifierTitle.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_tags = sort_by_feed(MClassifierTag.objects(user_id=user.pk, feed_id__in=found_feed_ids)) except OperationFailure: logging.info(" ***> Classifiers failure") else: for feed_id in found_feed_ids: classifiers[feed_id] = get_classifiers_for_user(user, feed_id, classifier_feeds[feed_id], classifier_authors[feed_id], classifier_titles[feed_id], classifier_tags[feed_id]) # Just need to format stories for story in stories: story_date = localtime_for_timezone(story['story_date'], user.profile.timezone) now = localtime_for_timezone(datetime.datetime.now(), user.profile.timezone) story['short_parsed_date'] = format_story_link_date__short(story_date, now)
def calculate_feed_scores(self, silent=False, stories_db=None): # now = datetime.datetime.strptime("2009-07-06 22:30:03", "%Y-%m-%d %H:%M:%S") now = datetime.datetime.now() UNREAD_CUTOFF = now - datetime.timedelta(days=settings.DAYS_OF_UNREAD) if self.user.profile.last_seen_on < UNREAD_CUTOFF: # if not silent: # logging.info(' ---> [%s] SKIPPING Computing scores: %s (1 week+)' % (self.user, self.feed)) return if not self.feed.fetched_once: if not silent: logging.info(' ---> [%s] NOT Computing scores: %s' % (self.user, self.feed)) self.needs_unread_recalc = False self.save() return feed_scores = dict(negative=0, neutral=0, positive=0) # Two weeks in age. If mark_read_date is older, mark old stories as read. date_delta = UNREAD_CUTOFF if date_delta < self.mark_read_date: date_delta = self.mark_read_date else: self.mark_read_date = date_delta read_stories = MUserStory.objects(user_id=self.user_id, feed_id=self.feed_id, read_date__gte=self.mark_read_date) # if not silent: # logging.info(' ---> [%s] Read stories: %s' % (self.user, datetime.datetime.now() - now)) read_stories_ids = [us.story_id for us in read_stories] stories_db = stories_db or MStory.objects(story_feed_id=self.feed_id, story_date__gte=date_delta) # if not silent: # logging.info(' ---> [%s] MStory: %s' % (self.user, datetime.datetime.now() - now)) oldest_unread_story_date = now unread_stories_db = [] for story in stories_db: if story.story_date < date_delta: continue if hasattr( story, 'story_guid') and story.story_guid not in read_stories_ids: unread_stories_db.append(story) if story.story_date < oldest_unread_story_date: oldest_unread_story_date = story.story_date stories = Feed.format_stories(unread_stories_db, self.feed_id) # if not silent: # logging.info(' ---> [%s] Format stories: %s' % (self.user, datetime.datetime.now() - now)) classifier_feeds = list( MClassifierFeed.objects(user_id=self.user_id, feed_id=self.feed_id, social_user_id=0)) classifier_authors = list( MClassifierAuthor.objects(user_id=self.user_id, feed_id=self.feed_id)) classifier_titles = list( MClassifierTitle.objects(user_id=self.user_id, feed_id=self.feed_id)) classifier_tags = list( MClassifierTag.objects(user_id=self.user_id, feed_id=self.feed_id)) # if not silent: # logging.info(' ---> [%s] Classifiers: %s (%s)' % (self.user, datetime.datetime.now() - now, classifier_feeds.count() + classifier_authors.count() + classifier_tags.count() + classifier_titles.count())) scores = { 'feed': apply_classifier_feeds(classifier_feeds, self.feed), } for story in stories: scores.update({ 'author': apply_classifier_authors(classifier_authors, story), 'tags': apply_classifier_tags(classifier_tags, story), 'title': apply_classifier_titles(classifier_titles, story), }) max_score = max(scores['author'], scores['tags'], scores['title']) min_score = min(scores['author'], scores['tags'], scores['title']) if max_score > 0: feed_scores['positive'] += 1 elif min_score < 0: feed_scores['negative'] += 1 else: if scores['feed'] > 0: feed_scores['positive'] += 1 elif scores['feed'] < 0: feed_scores['negative'] += 1 else: feed_scores['neutral'] += 1 # if not silent: # logging.info(' ---> [%s] End classifiers: %s' % (self.user, datetime.datetime.now() - now)) self.unread_count_positive = feed_scores['positive'] self.unread_count_neutral = feed_scores['neutral'] self.unread_count_negative = feed_scores['negative'] self.unread_count_updated = datetime.datetime.now() self.oldest_unread_story_date = oldest_unread_story_date self.needs_unread_recalc = False self.save() if (self.unread_count_positive == 0 and self.unread_count_neutral == 0 and self.unread_count_negative == 0): self.mark_feed_read() if not silent: logging.info(' ---> [%s] Computing scores: %s (%s/%s/%s)' % (self.user, self.feed, feed_scores['negative'], feed_scores['neutral'], feed_scores['positive'])) return self
def load_river_blurblog(request): limit = 10 start = time.time() user = get_user(request) social_user_ids = [int(uid) for uid in request.REQUEST.getlist("social_user_ids") if uid] original_user_ids = list(social_user_ids) page = int(request.REQUEST.get("page", 1)) order = request.REQUEST.get("order", "newest") read_filter = request.REQUEST.get("read_filter", "unread") relative_user_id = request.REQUEST.get("relative_user_id", None) now = localtime_for_timezone(datetime.datetime.now(), user.profile.timezone) UNREAD_CUTOFF = datetime.datetime.utcnow() - datetime.timedelta(days=settings.DAYS_OF_UNREAD) if not relative_user_id: relative_user_id = get_user(request).pk if not social_user_ids: socialsubs = MSocialSubscription.objects.filter(user_id=user.pk) social_user_ids = [s.subscription_user_id for s in socialsubs] offset = (page - 1) * limit limit = page * limit - 1 story_ids, story_dates = MSocialSubscription.feed_stories( user.pk, social_user_ids, offset=offset, limit=limit, order=order, read_filter=read_filter ) mstories = MStory.objects(id__in=story_ids) story_id_to_dates = dict(zip(story_ids, story_dates)) def sort_stories_by_id(a, b): return int(story_id_to_dates[str(b.id)]) - int(story_id_to_dates[str(a.id)]) sorted_mstories = sorted(mstories, cmp=sort_stories_by_id) stories = Feed.format_stories(sorted_mstories) for s, story in enumerate(stories): story["story_date"] = datetime.datetime.fromtimestamp(story_dates[s]) stories, user_profiles = MSharedStory.stories_with_comments_and_profiles(stories, relative_user_id, check_all=True) story_feed_ids = list(set(s["story_feed_id"] for s in stories)) usersubs = UserSubscription.objects.filter(user__pk=user.pk, feed__pk__in=story_feed_ids) usersubs_map = dict((sub.feed_id, sub) for sub in usersubs) unsub_feed_ids = list(set(story_feed_ids).difference(set(usersubs_map.keys()))) unsub_feeds = Feed.objects.filter(pk__in=unsub_feed_ids) unsub_feeds = [feed.canonical(include_favicon=False) for feed in unsub_feeds] # Find starred stories if story_feed_ids: story_ids = [story["id"] for story in stories] starred_stories = MStarredStory.objects(user_id=user.pk, story_guid__in=story_ids).only( "story_guid", "starred_date" ) starred_stories = dict([(story.story_guid, story.starred_date) for story in starred_stories]) shared_stories = MSharedStory.objects(user_id=user.pk, story_guid__in=story_ids).only( "story_guid", "shared_date", "comments" ) shared_stories = dict( [ (story.story_guid, dict(shared_date=story.shared_date, comments=story.comments)) for story in shared_stories ] ) userstories_db = MUserStory.objects(user_id=user.pk, feed_id__in=story_feed_ids, story_id__in=story_ids).only( "story_id" ) userstories = set(us.story_id for us in userstories_db) else: starred_stories = {} shared_stories = {} userstories = [] # Intelligence classifiers for all feeds involved if story_feed_ids: classifier_feeds = list(MClassifierFeed.objects(user_id=user.pk, feed_id__in=story_feed_ids)) classifier_authors = list(MClassifierAuthor.objects(user_id=user.pk, feed_id__in=story_feed_ids)) classifier_titles = list(MClassifierTitle.objects(user_id=user.pk, feed_id__in=story_feed_ids)) classifier_tags = list(MClassifierTag.objects(user_id=user.pk, feed_id__in=story_feed_ids)) else: classifier_feeds = [] classifier_authors = [] classifier_titles = [] classifier_tags = [] classifiers = sort_classifiers_by_feed( user=user, feed_ids=story_feed_ids, classifier_feeds=classifier_feeds, classifier_authors=classifier_authors, classifier_titles=classifier_titles, classifier_tags=classifier_tags, ) # Just need to format stories for story in stories: if story["id"] in userstories: story["read_status"] = 1 elif story["story_date"] < UNREAD_CUTOFF: story["read_status"] = 1 else: story["read_status"] = 0 story_date = localtime_for_timezone(story["story_date"], user.profile.timezone) story["short_parsed_date"] = format_story_link_date__short(story_date, now) story["long_parsed_date"] = format_story_link_date__long(story_date, now) if story["id"] in starred_stories: story["starred"] = True starred_date = localtime_for_timezone(starred_stories[story["id"]], user.profile.timezone) story["starred_date"] = format_story_link_date__long(starred_date, now) story["intelligence"] = { "feed": apply_classifier_feeds(classifier_feeds, story["story_feed_id"]), "author": apply_classifier_authors(classifier_authors, story), "tags": apply_classifier_tags(classifier_tags, story), "title": apply_classifier_titles(classifier_titles, story), } if story["id"] in shared_stories: story["shared"] = True shared_date = localtime_for_timezone(shared_stories[story["id"]]["shared_date"], user.profile.timezone) story["shared_date"] = format_story_link_date__long(shared_date, now) story["shared_comments"] = strip_tags(shared_stories[story["id"]]["comments"]) diff = time.time() - start timediff = round(float(diff), 2) logging.user( request, "~FYLoading ~FCriver blurblogs stories~FY: ~SBp%s~SN (%s/%s " "stories, ~SN%s/%s/%s feeds)" % (page, len(stories), len(mstories), len(story_feed_ids), len(social_user_ids), len(original_user_ids)), ) return { "stories": stories, "user_profiles": user_profiles, "feeds": unsub_feeds, "classifiers": classifiers, "elapsed_time": timediff, }
def load_single_feed(request, feed_id): start = datetime.datetime.utcnow() user = get_user(request) offset = int(request.REQUEST.get('offset', 0)) limit = int(request.REQUEST.get('limit', 12)) page = int(request.REQUEST.get('page', 1)) if page: offset = limit * (page-1) dupe_feed_id = None if not feed_id: raise Http404 try: feed = Feed.objects.get(id=feed_id) except Feed.DoesNotExist: feed_address = request.REQUEST.get('feed_address') dupe_feed = DuplicateFeed.objects.filter(duplicate_address=feed_address) if dupe_feed: feed = dupe_feed[0].feed dupe_feed_id = feed_id else: raise Http404 stories = feed.get_stories(offset, limit) # Get intelligence classifier for user classifier_feeds = MClassifierFeed.objects(user_id=user.pk, feed_id=feed_id) classifier_authors = MClassifierAuthor.objects(user_id=user.pk, feed_id=feed_id) classifier_titles = MClassifierTitle.objects(user_id=user.pk, feed_id=feed_id) classifier_tags = MClassifierTag.objects(user_id=user.pk, feed_id=feed_id) usersub = UserSubscription.objects.get(user=user, feed=feed) userstories = [] if usersub: userstories_db = MUserStory.objects(user_id=user.pk, feed_id=feed.pk, read_date__gte=usersub.mark_read_date) starred_stories = MStarredStory.objects(user_id=user.pk, story_feed_id=feed_id).only('story_guid', 'starred_date') starred_stories = dict([(story.story_guid, story.starred_date) for story in starred_stories]) for us in userstories_db: if hasattr(us.story, 'story_guid') and isinstance(us.story.story_guid, unicode): userstories.append(us.story.story_guid) elif hasattr(us.story, 'id') and isinstance(us.story.id, unicode): userstories.append(us.story.id) # TODO: Remove me after migration from story.id->guid for story in stories: [x.rewind() for x in [classifier_feeds, classifier_authors, classifier_tags, classifier_titles]] story_date = localtime_for_timezone(story['story_date'], user.profile.timezone) now = localtime_for_timezone(datetime.datetime.now(), user.profile.timezone) story['short_parsed_date'] = format_story_link_date__short(story_date, now) story['long_parsed_date'] = format_story_link_date__long(story_date, now) if usersub: if story['id'] in userstories: story['read_status'] = 1 elif not story.get('read_status') and story['story_date'] < usersub.mark_read_date: story['read_status'] = 1 elif not story.get('read_status') and story['story_date'] > usersub.last_read_date: story['read_status'] = 0 if story['id'] in starred_stories: story['starred'] = True starred_date = localtime_for_timezone(starred_stories[story['id']], user.profile.timezone) story['starred_date'] = format_story_link_date__long(starred_date, now) else: story['read_status'] = 1 story['intelligence'] = { 'feed': apply_classifier_feeds(classifier_feeds, feed), 'author': apply_classifier_authors(classifier_authors, story), 'tags': apply_classifier_tags(classifier_tags, story), 'title': apply_classifier_titles(classifier_titles, story), } # Intelligence feed_tags = json.decode(feed.data.popular_tags) if feed.data.popular_tags else [] feed_authors = json.decode(feed.data.popular_authors) if feed.data.popular_authors else [] classifiers = get_classifiers_for_user(user, feed_id, classifier_feeds, classifier_authors, classifier_titles, classifier_tags) if usersub: usersub.feed_opens += 1 usersub.save() diff = datetime.datetime.utcnow()-start timediff = float("%s.%.2s" % (diff.seconds, (diff.microseconds / 1000))) last_update = relative_timesince(feed.last_update) logging.user(request.user, "~FYLoading feed: ~SB%s%s ~SN(%s seconds)" % ( feed, ('~SN/p%s' % page) if page > 1 else '', timediff)) FeedLoadtime.objects.create(feed=feed, loadtime=timediff) data = dict(stories=stories, feed_tags=feed_tags, feed_authors=feed_authors, classifiers=classifiers, last_update=last_update, feed_id=feed.pk) if dupe_feed_id: data['dupe_feed_id'] = dupe_feed_id if not usersub: data.update(feed.canonical()) return data
def calculate_feed_scores(self, silent=False, stories=None): # now = datetime.datetime.strptime("2009-07-06 22:30:03", "%Y-%m-%d %H:%M:%S") now = datetime.datetime.now() UNREAD_CUTOFF = now - datetime.timedelta(days=settings.DAYS_OF_UNREAD) if self.user.profile.last_seen_on < UNREAD_CUTOFF: # if not silent: # logging.info(' ---> [%s] SKIPPING Computing scores: %s (1 week+)' % (self.user, self.feed)) return if not self.feed.fetched_once: if not silent: logging.info(" ---> [%s] NOT Computing scores: %s" % (self.user, self.feed)) self.needs_unread_recalc = False self.save() return feed_scores = dict(negative=0, neutral=0, positive=0) # Two weeks in age. If mark_read_date is older, mark old stories as read. date_delta = UNREAD_CUTOFF if date_delta < self.mark_read_date: date_delta = self.mark_read_date else: self.mark_read_date = date_delta read_stories = MUserStory.objects( user_id=self.user_id, feed_id=self.feed_id, read_date__gte=self.mark_read_date ) read_stories_ids = [us.story_id for us in read_stories] if not stories: stories_db = MStory.objects(story_feed_id=self.feed_id, story_date__gte=date_delta) stories = Feed.format_stories(stories_db, self.feed_id) oldest_unread_story_date = now unread_stories = [] for story in stories: if story["story_date"] < date_delta: continue if story["id"] not in read_stories_ids: unread_stories.append(story) if story["story_date"] < oldest_unread_story_date: oldest_unread_story_date = story["story_date"] # if not silent: # logging.info(' ---> [%s] Format stories: %s' % (self.user, datetime.datetime.now() - now)) classifier_feeds = list(MClassifierFeed.objects(user_id=self.user_id, feed_id=self.feed_id, social_user_id=0)) classifier_authors = list(MClassifierAuthor.objects(user_id=self.user_id, feed_id=self.feed_id)) classifier_titles = list(MClassifierTitle.objects(user_id=self.user_id, feed_id=self.feed_id)) classifier_tags = list(MClassifierTag.objects(user_id=self.user_id, feed_id=self.feed_id)) # if not silent: # logging.info(' ---> [%s] Classifiers: %s (%s)' % (self.user, datetime.datetime.now() - now, classifier_feeds.count() + classifier_authors.count() + classifier_tags.count() + classifier_titles.count())) scores = {"feed": apply_classifier_feeds(classifier_feeds, self.feed)} for story in unread_stories: scores.update( { "author": apply_classifier_authors(classifier_authors, story), "tags": apply_classifier_tags(classifier_tags, story), "title": apply_classifier_titles(classifier_titles, story), } ) max_score = max(scores["author"], scores["tags"], scores["title"]) min_score = min(scores["author"], scores["tags"], scores["title"]) if max_score > 0: feed_scores["positive"] += 1 elif min_score < 0: feed_scores["negative"] += 1 else: if scores["feed"] > 0: feed_scores["positive"] += 1 elif scores["feed"] < 0: feed_scores["negative"] += 1 else: feed_scores["neutral"] += 1 # if not silent: # logging.info(' ---> [%s] End classifiers: %s' % (self.user, datetime.datetime.now() - now)) self.unread_count_positive = feed_scores["positive"] self.unread_count_neutral = feed_scores["neutral"] self.unread_count_negative = feed_scores["negative"] self.unread_count_updated = datetime.datetime.now() self.oldest_unread_story_date = oldest_unread_story_date self.needs_unread_recalc = False self.save() if self.unread_count_positive == 0 and self.unread_count_neutral == 0 and self.unread_count_negative == 0: self.mark_feed_read() if not silent: logging.info( " ---> [%s] Computing scores: %s (%s/%s/%s)" % (self.user, self.feed, feed_scores["negative"], feed_scores["neutral"], feed_scores["positive"]) ) return self
def load_single_feed(request): user = get_user(request) offset = int(request.REQUEST.get("offset", 0)) limit = int(request.REQUEST.get("limit", 30)) page = int(request.REQUEST.get("page", 0)) if page: offset = limit * page feed_id = int(request.REQUEST.get("feed_id", 0)) if feed_id == 0: raise Http404 try: feed = Feed.objects.get(id=feed_id) except Feed.DoesNotExist: feed_address = request.REQUEST.get("feed_address") dupe_feed = DuplicateFeed.objects.filter(duplicate_address=feed_address) if dupe_feed: feed = dupe_feed[0].feed else: raise Http404 force_update = request.GET.get("force_update", False) now = datetime.datetime.utcnow() stories = feed.get_stories(offset, limit) if force_update: feed.update(force_update) # Get intelligence classifier for user classifier_feeds = MClassifierFeed.objects(user_id=user.pk, feed_id=feed_id) classifier_authors = MClassifierAuthor.objects(user_id=user.pk, feed_id=feed_id) classifier_titles = MClassifierTitle.objects(user_id=user.pk, feed_id=feed_id) classifier_tags = MClassifierTag.objects(user_id=user.pk, feed_id=feed_id) usersub = UserSubscription.objects.get(user=user, feed=feed) userstories = [] userstories_db = MUserStory.objects(user_id=user.pk, feed_id=feed.pk, read_date__gte=usersub.mark_read_date) starred_stories = MStarredStory.objects(user_id=user.pk, story_feed_id=feed_id).only("story_guid", "starred_date") starred_stories = dict([(story.story_guid, story.starred_date) for story in starred_stories]) for us in userstories_db: if hasattr(us.story, "story_guid") and isinstance(us.story.story_guid, unicode): userstories.append(us.story.story_guid) elif hasattr(us.story, "id") and isinstance(us.story.id, unicode): userstories.append(us.story.id) # TODO: Remove me after migration from story.id->guid for story in stories: classifier_feeds.rewind() classifier_authors.rewind() classifier_tags.rewind() classifier_titles.rewind() story_date = localtime_for_timezone(story["story_date"], user.profile.timezone) story["short_parsed_date"] = format_story_link_date__short(story_date) story["long_parsed_date"] = format_story_link_date__long(story_date) if story["id"] in userstories: story["read_status"] = 1 elif not story.get("read_status") and story["story_date"] < usersub.mark_read_date: story["read_status"] = 1 elif not story.get("read_status") and story["story_date"] > usersub.last_read_date: story["read_status"] = 0 if story["id"] in starred_stories: story["starred"] = True starred_date = localtime_for_timezone(starred_stories[story["id"]], user.profile.timezone) story["starred_date"] = format_story_link_date__long(starred_date) story["intelligence"] = { "feed": apply_classifier_feeds(classifier_feeds, feed), "author": apply_classifier_authors(classifier_authors, story), "tags": apply_classifier_tags(classifier_tags, story), "title": apply_classifier_titles(classifier_titles, story), } # Intelligence feed_tags = json.decode(feed.popular_tags) if feed.popular_tags else [] feed_authors = json.decode(feed.popular_authors) if feed.popular_authors else [] classifiers = get_classifiers_for_user( user, feed_id, classifier_feeds, classifier_authors, classifier_titles, classifier_tags ) usersub.feed_opens += 1 usersub.save() diff = datetime.datetime.utcnow() - now timediff = float("%s.%s" % (diff.seconds, (diff.microseconds / 1000))) last_update = relative_timesince(feed.last_update) logging.info(" ---> [%s] ~FYLoading feed: ~SB%s ~SN(%s seconds)" % (request.user, feed, timediff)) FeedLoadtime.objects.create(feed=feed, loadtime=timediff) data = dict( stories=stories, feed_tags=feed_tags, feed_authors=feed_authors, classifiers=classifiers, last_update=last_update, feed_id=feed.pk, ) return data
def calculate_feed_scores(self, silent=False, stories=None, force=False): # now = datetime.datetime.strptime("2009-07-06 22:30:03", "%Y-%m-%d %H:%M:%S") now = datetime.datetime.now() UNREAD_CUTOFF = now - datetime.timedelta(days=settings.DAYS_OF_UNREAD) if self.user.profile.last_seen_on < UNREAD_CUTOFF and not force: # if not silent: # logging.info(' ---> [%s] SKIPPING Computing scores: %s (1 week+)' % (self.user, self.feed)) return # if not self.feed.fetched_once: # if not silent: # logging.info(' ---> [%s] NOT Computing scores: %s' % (self.user, self.feed)) # self.needs_unread_recalc = False # self.save() # return feed_scores = dict(negative=0, neutral=0, positive=0) # Two weeks in age. If mark_read_date is older, mark old stories as read. date_delta = UNREAD_CUTOFF if date_delta < self.mark_read_date: date_delta = self.mark_read_date else: self.mark_read_date = date_delta if not stories: stories = cache.get('S:%s' % self.feed_id) unread_story_hashes = self.get_stories(read_filter='unread', limit=500, hashes_only=True) if not stories: stories_db = MStory.objects(story_hash__in=unread_story_hashes) stories = Feed.format_stories(stories_db, self.feed_id) oldest_unread_story_date = now unread_stories = [] for story in stories: if story['story_date'] < date_delta: continue if story['story_hash'] in unread_story_hashes: unread_stories.append(story) if story['story_date'] < oldest_unread_story_date: oldest_unread_story_date = story['story_date'] # if not silent: # logging.info(' ---> [%s] Format stories: %s' % (self.user, datetime.datetime.now() - now)) classifier_feeds = list( MClassifierFeed.objects(user_id=self.user_id, feed_id=self.feed_id, social_user_id=0)) classifier_authors = list( MClassifierAuthor.objects(user_id=self.user_id, feed_id=self.feed_id)) classifier_titles = list( MClassifierTitle.objects(user_id=self.user_id, feed_id=self.feed_id)) classifier_tags = list( MClassifierTag.objects(user_id=self.user_id, feed_id=self.feed_id)) # if not silent: # logging.info(' ---> [%s] Classifiers: %s (%s)' % (self.user, datetime.datetime.now() - now, classifier_feeds.count() + classifier_authors.count() + classifier_tags.count() + classifier_titles.count())) scores = { 'feed': apply_classifier_feeds(classifier_feeds, self.feed), } for story in unread_stories: scores.update({ 'author': apply_classifier_authors(classifier_authors, story), 'tags': apply_classifier_tags(classifier_tags, story), 'title': apply_classifier_titles(classifier_titles, story), }) max_score = max(scores['author'], scores['tags'], scores['title']) min_score = min(scores['author'], scores['tags'], scores['title']) if max_score > 0: feed_scores['positive'] += 1 elif min_score < 0: feed_scores['negative'] += 1 else: if scores['feed'] > 0: feed_scores['positive'] += 1 elif scores['feed'] < 0: feed_scores['negative'] += 1 else: feed_scores['neutral'] += 1 # if not silent: # logging.info(' ---> [%s] End classifiers: %s' % (self.user, datetime.datetime.now() - now)) self.unread_count_positive = feed_scores['positive'] self.unread_count_neutral = feed_scores['neutral'] self.unread_count_negative = feed_scores['negative'] self.unread_count_updated = datetime.datetime.now() self.oldest_unread_story_date = oldest_unread_story_date self.needs_unread_recalc = False self.save() if (self.unread_count_positive == 0 and self.unread_count_neutral == 0): self.mark_feed_read() if not silent: logging.user( self.user, '~FC~SNComputing scores: %s (~SB%s~SN/~SB%s~SN/~SB%s~SN)' % (self.feed, feed_scores['negative'], feed_scores['neutral'], feed_scores['positive'])) return self
def calculate_feed_scores(self, silent=False, stories=None, force=False): # now = datetime.datetime.strptime("2009-07-06 22:30:03", "%Y-%m-%d %H:%M:%S") now = datetime.datetime.now() UNREAD_CUTOFF = now - datetime.timedelta(days=settings.DAYS_OF_UNREAD) oldest_unread_story_date = now if self.user.profile.last_seen_on < UNREAD_CUTOFF and not force: # if not silent: # logging.info(' ---> [%s] SKIPPING Computing scores: %s (1 week+)' % (self.user, self.feed)) return self ong = self.unread_count_negative ont = self.unread_count_neutral ops = self.unread_count_positive # if not self.feed.fetched_once: # if not silent: # logging.info(' ---> [%s] NOT Computing scores: %s' % (self.user, self.feed)) # self.needs_unread_recalc = False # self.save() # return feed_scores = dict(negative=0, neutral=0, positive=0) # Two weeks in age. If mark_read_date is older, mark old stories as read. date_delta = UNREAD_CUTOFF if date_delta < self.mark_read_date: date_delta = self.mark_read_date else: self.mark_read_date = date_delta if self.is_trained: if not stories: stories = cache.get("S:%s" % self.feed_id) unread_story_hashes = self.get_stories(read_filter="unread", limit=500, hashes_only=True) if not stories: stories_db = MStory.objects(story_hash__in=unread_story_hashes) stories = Feed.format_stories(stories_db, self.feed_id) unread_stories = [] for story in stories: if story["story_date"] < date_delta: continue if story["story_hash"] in unread_story_hashes: unread_stories.append(story) if story["story_date"] < oldest_unread_story_date: oldest_unread_story_date = story["story_date"] # if not silent: # logging.info(' ---> [%s] Format stories: %s' % (self.user, datetime.datetime.now() - now)) classifier_feeds = list( MClassifierFeed.objects(user_id=self.user_id, feed_id=self.feed_id, social_user_id=0) ) classifier_authors = list(MClassifierAuthor.objects(user_id=self.user_id, feed_id=self.feed_id)) classifier_titles = list(MClassifierTitle.objects(user_id=self.user_id, feed_id=self.feed_id)) classifier_tags = list(MClassifierTag.objects(user_id=self.user_id, feed_id=self.feed_id)) if ( not len(classifier_feeds) and not len(classifier_authors) and not len(classifier_titles) and not len(classifier_tags) ): self.is_trained = False # if not silent: # logging.info(' ---> [%s] Classifiers: %s (%s)' % (self.user, datetime.datetime.now() - now, classifier_feeds.count() + classifier_authors.count() + classifier_tags.count() + classifier_titles.count())) scores = {"feed": apply_classifier_feeds(classifier_feeds, self.feed)} for story in unread_stories: scores.update( { "author": apply_classifier_authors(classifier_authors, story), "tags": apply_classifier_tags(classifier_tags, story), "title": apply_classifier_titles(classifier_titles, story), } ) max_score = max(scores["author"], scores["tags"], scores["title"]) min_score = min(scores["author"], scores["tags"], scores["title"]) if max_score > 0: feed_scores["positive"] += 1 elif min_score < 0: feed_scores["negative"] += 1 else: if scores["feed"] > 0: feed_scores["positive"] += 1 elif scores["feed"] < 0: feed_scores["negative"] += 1 else: feed_scores["neutral"] += 1 else: unread_story_hashes = self.get_stories(read_filter="unread", limit=500, hashes_only=True, withscores=True) feed_scores["neutral"] = len(unread_story_hashes) if feed_scores["neutral"]: oldest_unread_story_date = datetime.datetime.fromtimestamp(unread_story_hashes[-1][1]) if not silent: logging.user( self.user, "~FBUnread count (~SB%s~SN%s): ~SN(~FC%s~FB/~FC%s~FB/~FC%s~FB) ~SBto~SN (~FC%s~FB/~FC%s~FB/~FC%s~FB)" % ( self.feed_id, "/~FMtrained~FB" if self.is_trained else "", ong, ont, ops, feed_scores["negative"], feed_scores["neutral"], feed_scores["positive"], ), ) self.unread_count_positive = feed_scores["positive"] self.unread_count_neutral = feed_scores["neutral"] self.unread_count_negative = feed_scores["negative"] self.unread_count_updated = datetime.datetime.now() self.oldest_unread_story_date = oldest_unread_story_date self.needs_unread_recalc = False self.save() if self.unread_count_positive == 0 and self.unread_count_neutral == 0: self.mark_feed_read() if not silent: logging.user( self.user, "~FC~SNComputing scores: %s (~SB%s~SN/~SB%s~SN/~SB%s~SN)" % (self.feed, feed_scores["negative"], feed_scores["neutral"], feed_scores["positive"]), ) return self
def api_shared_story(request): user = request.user body = request.body_json after = body.get('after', None) before = body.get('before', None) limit = body.get('limit', 50) fields = body.get('triggerFields') blurblog_user = fields['blurblog_user'] entries = [] if isinstance(blurblog_user, int) or blurblog_user.isdigit(): social_user_ids = [int(blurblog_user)] elif blurblog_user == "all": socialsubs = MSocialSubscription.objects.filter(user_id=user.pk) social_user_ids = [ss.subscription_user_id for ss in socialsubs] mstories = MSharedStory.objects( user_id__in=social_user_ids ).order_by('-shared_date')[:limit] stories = Feed.format_stories(mstories) found_feed_ids = list(set([story['story_feed_id'] for story in stories])) share_user_ids = list(set([story['user_id'] for story in stories])) users = dict([(u.pk, u.username) for u in User.objects.filter(pk__in=share_user_ids).only('pk', 'username')]) feeds = dict([(f.pk, { "title": f.feed_title, "website": f.feed_link, "address": f.feed_address, }) for f in Feed.objects.filter(pk__in=found_feed_ids)]) classifier_feeds = list(MClassifierFeed.objects(user_id=user.pk, social_user_id__in=social_user_ids)) classifier_authors = list(MClassifierAuthor.objects(user_id=user.pk, social_user_id__in=social_user_ids)) classifier_titles = list(MClassifierTitle.objects(user_id=user.pk, social_user_id__in=social_user_ids)) classifier_tags = list(MClassifierTag.objects(user_id=user.pk, social_user_id__in=social_user_ids)) # Merge with feed specific classifiers classifier_feeds = classifier_feeds + list(MClassifierFeed.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_authors = classifier_authors + list(MClassifierAuthor.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_titles = classifier_titles + list(MClassifierTitle.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_tags = classifier_tags + list(MClassifierTag.objects(user_id=user.pk, feed_id__in=found_feed_ids)) for story in stories: if before and int(story['shared_date'].strftime("%s")) > before: continue if after and int(story['shared_date'].strftime("%s")) < after: continue score = compute_story_score(story, classifier_titles=classifier_titles, classifier_authors=classifier_authors, classifier_tags=classifier_tags, classifier_feeds=classifier_feeds) if score < 0: continue feed = feeds.get(story['story_feed_id'], None) entries.append({ "StoryTitle": story['story_title'], "StoryContent": story['story_content'], "StoryURL": story['story_permalink'], "StoryAuthor": story['story_authors'], "PublishedAt": story['story_date'].strftime("%Y-%m-%dT%H:%M:%SZ"), "StoryScore": score, "Comments": story['comments'], "Username": users.get(story['user_id']), "SharedAt": story['shared_date'].strftime("%Y-%m-%dT%H:%M:%SZ"), "Site": feed and feed['title'], "SiteURL": feed and feed['website'], "SiteRSS": feed and feed['address'], "meta": { "id": story['story_hash'], "timestamp": int(story['shared_date'].strftime("%s")) }, }) if after: entries = sorted(entries, key=lambda s: s['meta']['timestamp']) logging.user(request, "~FMChecking shared stories from ~SB~FCIFTTT~SN~FM: ~SB~FM%s~FM~SN - ~SB%s~SN stories" % (blurblog_user, len(entries))) return {"data": entries}
def load_single_feed(request): user = get_user(request) offset = int(request.REQUEST.get('offset', 0)) limit = int(request.REQUEST.get('limit', 30)) page = int(request.REQUEST.get('page', 0)) if page: offset = limit * page feed_id = int(request.REQUEST['feed_id']) feed = Feed.objects.get(id=feed_id) force_update = request.GET.get('force_update', False) now = datetime.datetime.now() stories = feed.get_stories(offset, limit) if force_update: feed.update(force_update) # Get intelligence classifier for user classifier_feeds = MClassifierFeed.objects(user_id=user.pk, feed_id=feed_id) classifier_authors = MClassifierAuthor.objects(user_id=user.pk, feed_id=feed_id) classifier_titles = MClassifierTitle.objects(user_id=user.pk, feed_id=feed_id) classifier_tags = MClassifierTag.objects(user_id=user.pk, feed_id=feed_id) try: usersub = UserSubscription.objects.get(user=user, feed=feed) except UserSubscription.DoesNotExist: # FIXME: Why is this happening for `conesus` when logged into another account?! logging.info(" ***> [%s] UserSub DNE, creating: %s" % (user, feed)) usersub = UserSubscription.objects.create(user=user, feed=feed) userstories = MUserStory.objects(user_id=user.pk, feed_id=feed.pk, read_date__gte=usersub.mark_read_date) userstories = [us.story.id for us in userstories] for story in stories: classifier_feeds.rewind() classifier_authors.rewind() classifier_tags.rewind() classifier_titles.rewind() if story.get('id') in userstories: story['read_status'] = 1 elif not story.get('read_status') and story['story_date'] < usersub.mark_read_date: story['read_status'] = 1 elif not story.get('read_status') and story['story_date'] > usersub.last_read_date: story['read_status'] = 0 story['intelligence'] = { 'feed': apply_classifier_feeds(classifier_feeds, feed), 'author': apply_classifier_authors(classifier_authors, story), 'tags': apply_classifier_tags(classifier_tags, story), 'title': apply_classifier_titles(classifier_titles, story), } # Intelligence feed_tags = json.decode(feed.popular_tags) if feed.popular_tags else [] feed_authors = json.decode(feed.popular_authors) if feed.popular_authors else [] classifiers = get_classifiers_for_user(user, feed_id, classifier_feeds, classifier_authors, classifier_titles, classifier_tags) usersub.feed_opens += 1 usersub.save() diff = datetime.datetime.now()-now logging.info(" ---> [%s] Loading feed: %s (%s.%s seconds)" % (request.user, feed, diff.seconds, diff.microseconds / 1000)) data = dict(stories=stories, feed_tags=feed_tags, feed_authors=feed_authors, classifiers=classifiers) return data
def load_river_stories(request): limit = 18 offset = 0 start = datetime.datetime.utcnow() user = get_user(request) feed_ids = [int(feed_id) for feed_id in request.REQUEST.getlist('feeds') if feed_id] original_feed_ids = list(feed_ids) page = int(request.REQUEST.get('page', 0))+1 read_stories_count = int(request.REQUEST.get('read_stories_count', 0)) bottom_delta = datetime.timedelta(days=settings.DAYS_OF_UNREAD) if not feed_ids: logging.user(request.user, "~FCLoading empty river stories: page %s" % (page)) return dict(stories=[]) # Fetch all stories at and before the page number. # Not a single page, because reading stories can move them up in the unread order. # `read_stories_count` is an optimization, works best when all 25 stories before have been read. limit = limit * page - read_stories_count # Read stories to exclude read_stories = MUserStory.objects(user_id=user.pk, feed_id__in=feed_ids).only('story') read_stories = [rs.story.id for rs in read_stories] # Determine mark_as_read dates for all feeds to ignore all stories before this date. # max_feed_count = 0 feed_counts = {} feed_last_reads = {} for feed_id in feed_ids: try: usersub = UserSubscription.objects.get(feed__pk=feed_id, user=user) except UserSubscription.DoesNotExist: continue if not usersub: continue feed_counts[feed_id] = (usersub.unread_count_negative * 1 + usersub.unread_count_neutral * 10 + usersub.unread_count_positive * 20) # if feed_counts[feed_id] > max_feed_count: # max_feed_count = feed_counts[feed_id] feed_last_reads[feed_id] = int(time.mktime(usersub.mark_read_date.timetuple())) feed_counts = sorted(feed_counts.items(), key=itemgetter(1))[:50] feed_ids = [f[0] for f in feed_counts] feed_last_reads = dict([(str(feed_id), feed_last_reads[feed_id]) for feed_id in feed_ids]) feed_counts = dict(feed_counts) # After excluding read stories, all that's left are stories # past the mark_read_date. Everything returned is guaranteed to be unread. mstories = MStory.objects( id__nin=read_stories, story_feed_id__in=feed_ids, story_date__gte=start - bottom_delta ).map_reduce("""function() { var d = feed_last_reads[this[~story_feed_id]]; if (this[~story_date].getTime()/1000 > d) { emit(this[~id], this); } }""", """function(key, values) { return values[0]; }""", output='inline', scope={ 'feed_last_reads': feed_last_reads } ) mstories = [story.value for story in mstories] mstories = sorted(mstories, cmp=lambda x, y: cmp(story_score(y, bottom_delta), story_score(x, bottom_delta))) # story_feed_counts = defaultdict(int) # mstories_pruned = [] # for story in mstories: # print story['story_title'], story_feed_counts[story['story_feed_id']] # if story_feed_counts[story['story_feed_id']] >= 3: continue # mstories_pruned.append(story) # story_feed_counts[story['story_feed_id']] += 1 stories = [] for i, story in enumerate(mstories): if i < offset: continue if i >= offset + limit: break stories.append(bunch(story)) stories = Feed.format_stories(stories) found_feed_ids = list(set([story['story_feed_id'] for story in stories])) # Find starred stories starred_stories = MStarredStory.objects( user_id=user.pk, story_feed_id__in=found_feed_ids ).only('story_guid', 'starred_date') starred_stories = dict([(story.story_guid, story.starred_date) for story in starred_stories]) # Intelligence classifiers for all feeds involved def sort_by_feed(classifiers): feed_classifiers = defaultdict(list) for classifier in classifiers: feed_classifiers[classifier.feed_id].append(classifier) return feed_classifiers classifier_feeds = sort_by_feed(MClassifierFeed.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_authors = sort_by_feed(MClassifierAuthor.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_titles = sort_by_feed(MClassifierTitle.objects(user_id=user.pk, feed_id__in=found_feed_ids)) classifier_tags = sort_by_feed(MClassifierTag.objects(user_id=user.pk, feed_id__in=found_feed_ids)) # Just need to format stories for story in stories: story_date = localtime_for_timezone(story['story_date'], user.profile.timezone) now = localtime_for_timezone(datetime.datetime.now(), user.profile.timezone) story['short_parsed_date'] = format_story_link_date__short(story_date, now) story['long_parsed_date'] = format_story_link_date__long(story_date, now) story['read_status'] = 0 if story['id'] in starred_stories: story['starred'] = True starred_date = localtime_for_timezone(starred_stories[story['id']], user.profile.timezone) story['starred_date'] = format_story_link_date__long(starred_date, now) story['intelligence'] = { 'feed': apply_classifier_feeds(classifier_feeds[story['story_feed_id']], story['story_feed_id']), 'author': apply_classifier_authors(classifier_authors[story['story_feed_id']], story), 'tags': apply_classifier_tags(classifier_tags[story['story_feed_id']], story), 'title': apply_classifier_titles(classifier_titles[story['story_feed_id']], story), } diff = datetime.datetime.utcnow() - start timediff = float("%s.%.2s" % (diff.seconds, (diff.microseconds / 1000))) logging.user(request.user, "~FCLoading river stories: page %s - ~SB%s/%s " "stories ~SN(%s/%s/%s feeds) ~FB(%s seconds)" % (page, len(stories), len(mstories), len(found_feed_ids), len(feed_ids), len(original_feed_ids), timediff)) return dict(stories=stories)
def calculate_feed_scores(self, silent=False, stories_db=None): UNREAD_CUTOFF = datetime.datetime.utcnow() - datetime.timedelta(days=settings.DAYS_OF_UNREAD) if self.user.profile.last_seen_on < UNREAD_CUTOFF: # if not silent: # logging.info(' ---> [%s] SKIPPING Computing scores: %s (1 week+)' % (self.user, self.feed)) return if not self.feed.fetched_once: if not silent: logging.info(' ---> [%s] NOT Computing scores: %s' % (self.user, self.feed)) self.needs_unread_recalc = False self.save() return if not silent: logging.info(' ---> [%s] Computing scores: %s' % (self.user, self.feed)) feed_scores = dict(negative=0, neutral=0, positive=0) # Two weeks in age. If mark_read_date is older, mark old stories as read. date_delta = UNREAD_CUTOFF if date_delta < self.mark_read_date: date_delta = self.mark_read_date else: self.mark_read_date = date_delta read_stories = MUserStory.objects(user_id=self.user.pk, feed_id=self.feed.pk, read_date__gte=self.mark_read_date) # if not silent: # logging.info(' ---> [%s] Read stories: %s' % (self.user, datetime.datetime.now() - now)) read_stories_ids = [] for us in read_stories: if hasattr(us.story, 'story_guid') and isinstance(us.story.story_guid, unicode): read_stories_ids.append(us.story.story_guid) elif hasattr(us.story, 'id') and isinstance(us.story.id, unicode): read_stories_ids.append(us.story.id) # TODO: Remove me after migration from story.id->guid stories_db = stories_db or MStory.objects(story_feed_id=self.feed.pk, story_date__gte=date_delta) # if not silent: # logging.info(' ---> [%s] MStory: %s' % (self.user, datetime.datetime.now() - now)) unread_stories_db = [] for story in stories_db: if story.story_date < date_delta: continue if hasattr(story, 'story_guid') and story.story_guid not in read_stories_ids: unread_stories_db.append(story) elif isinstance(story.id, unicode) and story.id not in read_stories_ids: unread_stories_db.append(story) stories = Feed.format_stories(unread_stories_db, self.feed.pk) # if not silent: # logging.info(' ---> [%s] Format stories: %s' % (self.user, datetime.datetime.now() - now)) classifier_feeds = MClassifierFeed.objects(user_id=self.user.pk, feed_id=self.feed.pk) classifier_authors = MClassifierAuthor.objects(user_id=self.user.pk, feed_id=self.feed.pk) classifier_titles = MClassifierTitle.objects(user_id=self.user.pk, feed_id=self.feed.pk) classifier_tags = MClassifierTag.objects(user_id=self.user.pk, feed_id=self.feed.pk) # if not silent: # logging.info(' ---> [%s] Classifiers: %s (%s)' % (self.user, datetime.datetime.now() - now, classifier_feeds.count() + classifier_authors.count() + classifier_tags.count() + classifier_titles.count())) scores = { 'feed': apply_classifier_feeds(classifier_feeds, self.feed), } for story in stories: classifier_authors.rewind() classifier_tags.rewind() classifier_titles.rewind() scores.update({ 'author': apply_classifier_authors(classifier_authors, story), 'tags': apply_classifier_tags(classifier_tags, story), 'title': apply_classifier_titles(classifier_titles, story), }) max_score = max(scores['author'], scores['tags'], scores['title']) min_score = min(scores['author'], scores['tags'], scores['title']) if max_score > 0: feed_scores['positive'] += 1 elif min_score < 0: feed_scores['negative'] += 1 else: if scores['feed'] > 0: feed_scores['positive'] += 1 elif scores['feed'] < 0: feed_scores['negative'] += 1 else: feed_scores['neutral'] += 1 # if not silent: # logging.info(' ---> [%s] End classifiers: %s' % (self.user, datetime.datetime.now() - now)) self.unread_count_positive = feed_scores['positive'] self.unread_count_neutral = feed_scores['neutral'] self.unread_count_negative = feed_scores['negative'] self.needs_unread_recalc = False self.save() if (self.unread_count_positive == 0 and self.unread_count_neutral == 0): self.mark_feed_read() cache.delete('usersub:%s' % self.user.id) return
def calculate_feed_scores(self, silent=False, stories_db=None): # now = datetime.datetime.strptime("2009-07-06 22:30:03", "%Y-%m-%d %H:%M:%S") now = datetime.datetime.now() UNREAD_CUTOFF = now - datetime.timedelta(days=settings.DAYS_OF_UNREAD) if self.user.profile.last_seen_on < UNREAD_CUTOFF: # if not silent: # logging.info(' ---> [%s] SKIPPING Computing scores: %s (1 week+)' % (self.user, self.feed)) return if not self.feed.fetched_once: if not silent: logging.info(' ---> [%s] NOT Computing scores: %s' % (self.user, self.feed)) self.needs_unread_recalc = False self.save() return feed_scores = dict(negative=0, neutral=0, positive=0) # Two weeks in age. If mark_read_date is older, mark old stories as read. date_delta = UNREAD_CUTOFF if date_delta < self.mark_read_date: date_delta = self.mark_read_date else: self.mark_read_date = date_delta read_stories = MUserStory.objects(user_id=self.user.pk, feed_id=self.feed.pk, read_date__gte=self.mark_read_date) # if not silent: # logging.info(' ---> [%s] Read stories: %s' % (self.user, datetime.datetime.now() - now)) read_stories_ids = [] for us in read_stories: read_stories_ids.append(us.story_id) stories_db = stories_db or MStory.objects(story_feed_id=self.feed.pk, story_date__gte=date_delta) # if not silent: # logging.info(' ---> [%s] MStory: %s' % (self.user, datetime.datetime.now() - now)) oldest_unread_story_date = now unread_stories_db = [] for story in stories_db: if story.story_date < date_delta: continue if hasattr(story, 'story_guid') and story.story_guid not in read_stories_ids: unread_stories_db.append(story) if story.story_date < oldest_unread_story_date: oldest_unread_story_date = story.story_date stories = Feed.format_stories(unread_stories_db, self.feed.pk) # if not silent: # logging.info(' ---> [%s] Format stories: %s' % (self.user, datetime.datetime.now() - now)) classifier_feeds = list(MClassifierFeed.objects(user_id=self.user.pk, feed_id=self.feed.pk)) classifier_authors = list(MClassifierAuthor.objects(user_id=self.user.pk, feed_id=self.feed.pk)) classifier_titles = list(MClassifierTitle.objects(user_id=self.user.pk, feed_id=self.feed.pk)) classifier_tags = list(MClassifierTag.objects(user_id=self.user.pk, feed_id=self.feed.pk)) # if not silent: # logging.info(' ---> [%s] Classifiers: %s (%s)' % (self.user, datetime.datetime.now() - now, classifier_feeds.count() + classifier_authors.count() + classifier_tags.count() + classifier_titles.count())) scores = { 'feed': apply_classifier_feeds(classifier_feeds, self.feed), } for story in stories: scores.update({ 'author' : apply_classifier_authors(classifier_authors, story), 'tags' : apply_classifier_tags(classifier_tags, story), 'title' : apply_classifier_titles(classifier_titles, story), }) max_score = max(scores['author'], scores['tags'], scores['title']) min_score = min(scores['author'], scores['tags'], scores['title']) if max_score > 0: feed_scores['positive'] += 1 elif min_score < 0: feed_scores['negative'] += 1 else: if scores['feed'] > 0: feed_scores['positive'] += 1 elif scores['feed'] < 0: feed_scores['negative'] += 1 else: feed_scores['neutral'] += 1 # if not silent: # logging.info(' ---> [%s] End classifiers: %s' % (self.user, datetime.datetime.now() - now)) self.unread_count_positive = feed_scores['positive'] self.unread_count_neutral = feed_scores['neutral'] self.unread_count_negative = feed_scores['negative'] self.unread_count_updated = datetime.datetime.now() self.oldest_unread_story_date = oldest_unread_story_date self.needs_unread_recalc = False self.save() # if (self.unread_count_positive == 0 and # self.unread_count_neutral == 0): # self.mark_feed_read() cache.delete('usersub:%s' % self.user.id) if not silent: logging.info(' ---> [%s] Computing scores: %s (%s/%s/%s)' % (self.user, self.feed, feed_scores['negative'], feed_scores['neutral'], feed_scores['positive'])) return
def calculate_feed_scores(self, silent=False): if self.user.profile.last_seen_on < MONTH_AGO: if not silent: logging.info(' ---> [%s] SKIPPING Computing scores: %s (1 month+)' % (self.user, self.feed)) return if not self.feed.fetched_once: if not silent: logging.info(' ---> [%s] NOT Computing scores: %s' % (self.user, self.feed)) self.needs_unread_recalc = False self.save() return if not silent: logging.info(' ---> [%s] Computing scores: %s' % (self.user, self.feed)) feed_scores = dict(negative=0, neutral=0, positive=0) # Two weeks in age. If mark_read_date is older, mark old stories as read. date_delta = datetime.datetime.now()-datetime.timedelta(days=DAYS_OF_UNREAD) if date_delta < self.mark_read_date: date_delta = self.mark_read_date else: self.mark_read_date = date_delta read_stories = MUserStory.objects(user_id=self.user.pk, feed_id=self.feed.pk) read_stories_ids = [rs.story.id for rs in read_stories] from django.db import connection connection.queries = [] stories_db = MStory.objects(story_feed_id=self.feed.pk, story_date__gte=date_delta) stories_db = [story for story in stories_db if story.id not in read_stories_ids] stories = self.feed.format_stories(stories_db) classifier_feeds = MClassifierFeed.objects(user_id=self.user.pk, feed_id=self.feed.pk) classifier_authors = MClassifierAuthor.objects(user_id=self.user.pk, feed_id=self.feed.pk) classifier_titles = MClassifierTitle.objects(user_id=self.user.pk, feed_id=self.feed.pk) classifier_tags = MClassifierTag.objects(user_id=self.user.pk, feed_id=self.feed.pk) scores = { 'feed': apply_classifier_feeds(classifier_feeds, self.feed), } for story in stories: classifier_authors.rewind() classifier_tags.rewind() classifier_titles.rewind() scores.update({ 'author': apply_classifier_authors(classifier_authors, story), 'tags': apply_classifier_tags(classifier_tags, story), 'title': apply_classifier_titles(classifier_titles, story), }) max_score = max(scores['feed'], scores['author'], scores['tags'], scores['title']) min_score = min(scores['feed'], scores['author'], scores['tags'], scores['title']) if max_score > 0: feed_scores['positive'] += 1 if min_score < 0: feed_scores['negative'] += 1 if max_score == 0 and min_score == 0: feed_scores['neutral'] += 1 self.unread_count_positive = feed_scores['positive'] self.unread_count_neutral = feed_scores['neutral'] self.unread_count_negative = feed_scores['negative'] self.needs_unread_recalc = False self.save() if (self.unread_count_positive == 0 and self.unread_count_neutral == 0): self.mark_feed_read() cache.delete('usersub:%s' % self.user.id) return
def api_unread_story(request, trigger_slug=None): user = request.user body = request.body_json after = body.get('after', None) before = body.get('before', None) limit = body.get('limit', 50) fields = body.get('triggerFields') feed_or_folder = fields['feed_or_folder'] entries = [] if isinstance(feed_or_folder, int) or feed_or_folder.isdigit(): feed_id = int(feed_or_folder) usersub = UserSubscription.objects.get(user=user, feed_id=feed_id) found_feed_ids = [feed_id] found_trained_feed_ids = [feed_id] if usersub.is_trained else [] stories = usersub.get_stories(order="newest", read_filter="unread", offset=0, limit=limit, default_cutoff_date=user.profile.unread_cutoff) else: folder_title = feed_or_folder if folder_title == "Top Level": folder_title = " " usf = UserSubscriptionFolders.objects.get(user=user) flat_folders = usf.flatten_folders() feed_ids = None if folder_title != "all": feed_ids = flat_folders.get(folder_title) usersubs = UserSubscription.subs_for_feeds(user.pk, feed_ids=feed_ids, read_filter="unread") feed_ids = [sub.feed_id for sub in usersubs] params = { "user_id": user.pk, "feed_ids": feed_ids, "offset": 0, "limit": limit, "order": "newest", "read_filter": "unread", "usersubs": usersubs, "cutoff_date": user.profile.unread_cutoff, } story_hashes, unread_feed_story_hashes = UserSubscription.feed_stories(**params) mstories = MStory.objects(story_hash__in=story_hashes).order_by('-story_date') stories = Feed.format_stories(mstories) found_feed_ids = list(set([story['story_feed_id'] for story in stories])) trained_feed_ids = [sub.feed_id for sub in usersubs if sub.is_trained] found_trained_feed_ids = list(set(trained_feed_ids) & set(found_feed_ids)) if found_trained_feed_ids: classifier_feeds = list(MClassifierFeed.objects(user_id=user.pk, feed_id__in=found_trained_feed_ids)) classifier_authors = list(MClassifierAuthor.objects(user_id=user.pk, feed_id__in=found_trained_feed_ids)) classifier_titles = list(MClassifierTitle.objects(user_id=user.pk, feed_id__in=found_trained_feed_ids)) classifier_tags = list(MClassifierTag.objects(user_id=user.pk, feed_id__in=found_trained_feed_ids)) feeds = dict([(f.pk, { "title": f.feed_title, "website": f.feed_link, "address": f.feed_address, }) for f in Feed.objects.filter(pk__in=found_feed_ids)]) for story in stories: if before and int(story['story_date'].strftime("%s")) > before: continue if after and int(story['story_date'].strftime("%s")) < after: continue score = 0 if found_trained_feed_ids and story['story_feed_id'] in found_trained_feed_ids: score = compute_story_score(story, classifier_titles=classifier_titles, classifier_authors=classifier_authors, classifier_tags=classifier_tags, classifier_feeds=classifier_feeds) if score < 0: continue if trigger_slug == "new-unread-focus-story" and score < 1: continue feed = feeds.get(story['story_feed_id'], None) entries.append({ "StoryTitle": story['story_title'], "StoryContent": story['story_content'], "StoryURL": story['story_permalink'], "StoryAuthor": story['story_authors'], "PublishedAt": story['story_date'].strftime("%Y-%m-%dT%H:%M:%SZ"), "StoryScore": score, "Site": feed and feed['title'], "SiteURL": feed and feed['website'], "SiteRSS": feed and feed['address'], "ifttt": { "id": story['story_hash'], "timestamp": int(story['story_date'].strftime("%s")) }, }) if after: entries = sorted(entries, key=lambda s: s['ifttt']['timestamp']) logging.user(request, "~FYChecking unread%s stories with ~SB~FCIFTTT~SN~FY: ~SB%s~SN - ~SB%s~SN stories" % (" ~SBfocus~SN" if trigger_slug == "new-unread-focus-story" else "", feed_or_folder, len(entries))) return {"data": entries[:limit]}
def load_social_stories(request, user_id, username=None): start = time.time() user = get_user(request) social_user_id = int(user_id) social_user = get_object_or_404(User, pk=social_user_id) offset = int(request.REQUEST.get('offset', 0)) limit = int(request.REQUEST.get('limit', 6)) page = request.REQUEST.get('page') order = request.REQUEST.get('order', 'newest') read_filter = request.REQUEST.get('read_filter', 'all') stories = [] if page: offset = limit * (int(page) - 1) now = localtime_for_timezone(datetime.datetime.now(), user.profile.timezone) UNREAD_CUTOFF = datetime.datetime.utcnow() - datetime.timedelta(days=settings.DAYS_OF_UNREAD) social_profile = MSocialProfile.get_user(social_user.pk) try: socialsub = MSocialSubscription.objects.get(user_id=user.pk, subscription_user_id=social_user_id) except MSocialSubscription.DoesNotExist: socialsub = None mstories = MSharedStory.objects(user_id=social_user.pk).order_by('-shared_date')[offset:offset+limit] stories = Feed.format_stories(mstories) if socialsub and (read_filter == 'unread' or order == 'oldest'): story_ids = socialsub.get_stories(order=order, read_filter=read_filter, offset=offset, limit=limit) story_date_order = "%sshared_date" % ('' if order == 'oldest' else '-') if story_ids: mstories = MSharedStory.objects(user_id=social_user.pk, story_db_id__in=story_ids).order_by(story_date_order) stories = Feed.format_stories(mstories) else: mstories = MSharedStory.objects(user_id=social_user.pk).order_by('-shared_date')[offset:offset+limit] stories = Feed.format_stories(mstories) if not stories: return dict(stories=[]) checkpoint1 = time.time() stories, user_profiles = MSharedStory.stories_with_comments_and_profiles(stories, user.pk, check_all=True) story_feed_ids = list(set(s['story_feed_id'] for s in stories)) usersubs = UserSubscription.objects.filter(user__pk=user.pk, feed__pk__in=story_feed_ids) usersubs_map = dict((sub.feed_id, sub) for sub in usersubs) unsub_feed_ids = list(set(story_feed_ids).difference(set(usersubs_map.keys()))) unsub_feeds = Feed.objects.filter(pk__in=unsub_feed_ids) unsub_feeds = [feed.canonical(include_favicon=False) for feed in unsub_feeds] date_delta = UNREAD_CUTOFF if socialsub and date_delta < socialsub.mark_read_date: date_delta = socialsub.mark_read_date # Get intelligence classifier for user classifier_feeds = list(MClassifierFeed.objects(user_id=user.pk, social_user_id=social_user_id)) classifier_authors = list(MClassifierAuthor.objects(user_id=user.pk, social_user_id=social_user_id)) classifier_titles = list(MClassifierTitle.objects(user_id=user.pk, social_user_id=social_user_id)) classifier_tags = list(MClassifierTag.objects(user_id=user.pk, social_user_id=social_user_id)) # Merge with feed specific classifiers classifier_feeds = classifier_feeds + list(MClassifierFeed.objects(user_id=user.pk, feed_id__in=story_feed_ids)) classifier_authors = classifier_authors + list(MClassifierAuthor.objects(user_id=user.pk, feed_id__in=story_feed_ids)) classifier_titles = classifier_titles + list(MClassifierTitle.objects(user_id=user.pk, feed_id__in=story_feed_ids)) classifier_tags = classifier_tags + list(MClassifierTag.objects(user_id=user.pk, feed_id__in=story_feed_ids)) checkpoint2 = time.time() story_ids = [story['id'] for story in stories] userstories_db = MUserStory.objects(user_id=user.pk, feed_id__in=story_feed_ids, story_id__in=story_ids).only('story_id') userstories = set(us.story_id for us in userstories_db) starred_stories = MStarredStory.objects(user_id=user.pk, story_feed_id__in=story_feed_ids, story_guid__in=story_ids).only('story_guid', 'starred_date') shared_stories = MSharedStory.objects(user_id=user.pk, story_feed_id__in=story_feed_ids, story_guid__in=story_ids)\ .only('story_guid', 'shared_date', 'comments') starred_stories = dict([(story.story_guid, story.starred_date) for story in starred_stories]) shared_stories = dict([(story.story_guid, dict(shared_date=story.shared_date, comments=story.comments)) for story in shared_stories]) for story in stories: story['social_user_id'] = social_user_id story_feed_id = story['story_feed_id'] # story_date = localtime_for_timezone(story['story_date'], user.profile.timezone) shared_date = localtime_for_timezone(story['shared_date'], user.profile.timezone) story['short_parsed_date'] = format_story_link_date__short(shared_date, now) story['long_parsed_date'] = format_story_link_date__long(shared_date, now) if not socialsub: story['read_status'] = 1 elif story['id'] in userstories: story['read_status'] = 1 elif story['shared_date'] < date_delta: story['read_status'] = 1 elif not usersubs_map.get(story_feed_id): story['read_status'] = 0 elif not story.get('read_status') and story['story_date'] < usersubs_map[story_feed_id].mark_read_date: story['read_status'] = 1 elif not story.get('read_status') and story['shared_date'] < date_delta: story['read_status'] = 1 # elif not story.get('read_status') and socialsub and story['shared_date'] > socialsub.last_read_date: # story['read_status'] = 0 else: story['read_status'] = 0 if story['id'] in starred_stories: story['starred'] = True starred_date = localtime_for_timezone(starred_stories[story['id']], user.profile.timezone) story['starred_date'] = format_story_link_date__long(starred_date, now) if story['id'] in shared_stories: story['shared'] = True shared_date = localtime_for_timezone(shared_stories[story['id']]['shared_date'], user.profile.timezone) story['shared_date'] = format_story_link_date__long(shared_date, now) story['shared_comments'] = strip_tags(shared_stories[story['id']]['comments']) story['intelligence'] = { 'feed': apply_classifier_feeds(classifier_feeds, story['story_feed_id'], social_user_id=social_user_id), 'author': apply_classifier_authors(classifier_authors, story), 'tags': apply_classifier_tags(classifier_tags, story), 'title': apply_classifier_titles(classifier_titles, story), } classifiers = sort_classifiers_by_feed(user=user, feed_ids=story_feed_ids, classifier_feeds=classifier_feeds, classifier_authors=classifier_authors, classifier_titles=classifier_titles, classifier_tags=classifier_tags) if socialsub: socialsub.feed_opens += 1 socialsub.save() diff1 = checkpoint1-start diff2 = checkpoint2-start logging.user(request, "~FYLoading ~FMshared stories~FY: ~SB%s%s ~SN(~SB%.4ss/%.4ss~SN)" % ( social_profile.title[:22], ('~SN/p%s' % page) if page > 1 else '', diff1, diff2)) return { "stories": stories, "user_profiles": user_profiles, "feeds": unsub_feeds, "classifiers": classifiers, }
def load_single_feed(request, feed_id): start = time.time() user = get_user(request) offset = int(request.REQUEST.get('offset', 0)) limit = int(request.REQUEST.get('limit', 12)) page = int(request.REQUEST.get('page', 1)) dupe_feed_id = None userstories_db = None if page: offset = limit * (page-1) if not feed_id: raise Http404 try: feed = Feed.objects.get(id=feed_id) except Feed.DoesNotExist: feed_address = request.REQUEST.get('feed_address') dupe_feed = DuplicateFeed.objects.filter(duplicate_address=feed_address) if dupe_feed: feed = dupe_feed[0].feed dupe_feed_id = feed_id else: raise Http404 stories = feed.get_stories(offset, limit) # Get intelligence classifier for user classifier_feeds = list(MClassifierFeed.objects(user_id=user.pk, feed_id=feed_id)) classifier_authors = list(MClassifierAuthor.objects(user_id=user.pk, feed_id=feed_id)) classifier_titles = list(MClassifierTitle.objects(user_id=user.pk, feed_id=feed_id)) classifier_tags = list(MClassifierTag.objects(user_id=user.pk, feed_id=feed_id)) checkpoint1 = time.time() usersub = UserSubscription.objects.get(user=user, feed=feed) userstories = [] if usersub and stories: story_ids = [story['id'] for story in stories] userstories_db = MUserStory.objects(user_id=user.pk, feed_id=feed.pk, story_id__in=story_ids).only('story_id') starred_stories = MStarredStory.objects(user_id=user.pk, story_feed_id=feed_id, story_guid__in=story_ids).only('story_guid', 'starred_date') starred_stories = dict([(story.story_guid, story.starred_date) for story in starred_stories]) userstories = set(us.story_id for us in userstories_db) checkpoint2 = time.time() for story in stories: story_date = localtime_for_timezone(story['story_date'], user.profile.timezone) now = localtime_for_timezone(datetime.datetime.now(), user.profile.timezone) story['short_parsed_date'] = format_story_link_date__short(story_date, now) story['long_parsed_date'] = format_story_link_date__long(story_date, now) if usersub: if story['id'] in userstories: story['read_status'] = 1 elif not story.get('read_status') and story['story_date'] < usersub.mark_read_date: story['read_status'] = 1 elif not story.get('read_status') and story['story_date'] > usersub.last_read_date: story['read_status'] = 0 if story['id'] in starred_stories: story['starred'] = True starred_date = localtime_for_timezone(starred_stories[story['id']], user.profile.timezone) story['starred_date'] = format_story_link_date__long(starred_date, now) else: story['read_status'] = 1 story['intelligence'] = { 'feed': apply_classifier_feeds(classifier_feeds, feed), 'author': apply_classifier_authors(classifier_authors, story), 'tags': apply_classifier_tags(classifier_tags, story), 'title': apply_classifier_titles(classifier_titles, story), } checkpoint3 = time.time() # Intelligence feed_tags = json.decode(feed.data.popular_tags) if feed.data.popular_tags else [] feed_authors = json.decode(feed.data.popular_authors) if feed.data.popular_authors else [] classifiers = get_classifiers_for_user(user, feed_id, classifier_feeds, classifier_authors, classifier_titles, classifier_tags) if usersub: usersub.feed_opens += 1 usersub.save() diff1 = checkpoint1-start diff2 = checkpoint2-start diff3 = checkpoint3-start timediff = time.time()-start last_update = relative_timesince(feed.last_update) logging.user(request, "~FYLoading feed: ~SB%s%s ~SN(%.4s seconds, ~SB%.4s/%.4s(%s)/%.4s~SN)" % ( feed.feed_title[:32], ('~SN/p%s' % page) if page > 1 else '', timediff, diff1, diff2, userstories_db and userstories_db.count() or '~SN0~SB', diff3)) FeedLoadtime.objects.create(feed=feed, loadtime=timediff) data = dict(stories=stories, feed_tags=feed_tags, feed_authors=feed_authors, classifiers=classifiers, last_update=last_update, feed_id=feed.pk) if dupe_feed_id: data['dupe_feed_id'] = dupe_feed_id if not usersub: data.update(feed.canonical()) return data
def load_single_feed(request): user = get_user(request) offset = int(request.REQUEST.get('offset', 0)) limit = int(request.REQUEST.get('limit', 30)) page = int(request.REQUEST.get('page', 0)) if page: offset = limit * page feed_id = int(request.REQUEST.get('feed_id', 0)) if feed_id == 0: raise Http404 try: feed = Feed.objects.get(id=feed_id) except Feed.DoesNotExist: feed_address = request.REQUEST.get('feed_address') dupe_feed = DuplicateFeed.objects.filter(duplicate_address=feed_address) if dupe_feed: feed = dupe_feed[0].feed else: raise Http404 force_update = request.GET.get('force_update', False) now = datetime.datetime.utcnow() stories = feed.get_stories(offset, limit) if force_update: feed.update(force_update) # Get intelligence classifier for user classifier_feeds = MClassifierFeed.objects(user_id=user.pk, feed_id=feed_id) classifier_authors = MClassifierAuthor.objects(user_id=user.pk, feed_id=feed_id) classifier_titles = MClassifierTitle.objects(user_id=user.pk, feed_id=feed_id) classifier_tags = MClassifierTag.objects(user_id=user.pk, feed_id=feed_id) try: usersub = UserSubscription.objects.get(user=user, feed=feed) except UserSubscription.DoesNotExist: # FIXME: Why is this happening for `conesus` when logged into another account?! logging.info(" ***> [%s] UserSub DNE, creating: %s" % (user, feed)) usersub = UserSubscription.objects.create(user=user, feed=feed) userstories = [] userstories_db = MUserStory.objects(user_id=user.pk, feed_id=feed.pk, read_date__gte=usersub.mark_read_date) for us in userstories_db: if hasattr(us.story, 'story_guid') and isinstance(us.story.story_guid, unicode): userstories.append(us.story.story_guid) elif hasattr(us.story, 'id') and isinstance(us.story.id, unicode): userstories.append(us.story.id) # TODO: Remove me after migration from story.id->guid for story in stories: classifier_feeds.rewind() classifier_authors.rewind() classifier_tags.rewind() classifier_titles.rewind() if story['id'] in userstories: story['read_status'] = 1 elif not story.get('read_status') and story['story_date'] < usersub.mark_read_date: story['read_status'] = 1 elif not story.get('read_status') and story['story_date'] > usersub.last_read_date: story['read_status'] = 0 story['intelligence'] = { 'feed': apply_classifier_feeds(classifier_feeds, feed), 'author': apply_classifier_authors(classifier_authors, story), 'tags': apply_classifier_tags(classifier_tags, story), 'title': apply_classifier_titles(classifier_titles, story), } # Intelligence feed_tags = json.decode(feed.popular_tags) if feed.popular_tags else [] feed_authors = json.decode(feed.popular_authors) if feed.popular_authors else [] classifiers = get_classifiers_for_user(user, feed_id, classifier_feeds, classifier_authors, classifier_titles, classifier_tags) usersub.feed_opens += 1 usersub.save() diff = datetime.datetime.utcnow()-now timediff = float("%s.%s" % (diff.seconds, (diff.microseconds / 1000))) logging.info(" ---> [%s] Loading feed: %s (%s seconds)" % (request.user, feed, timediff)) FeedLoadtime.objects.create(feed=feed, loadtime=timediff) last_update = relative_timesince(feed.last_update) data = dict(stories=stories, feed_tags=feed_tags, feed_authors=feed_authors, classifiers=classifiers, last_update=last_update, feed_id=feed.pk) return data
def calculate_feed_scores(self, silent=False, stories=None, force=False): # now = datetime.datetime.strptime("2009-07-06 22:30:03", "%Y-%m-%d %H:%M:%S") now = datetime.datetime.now() oldest_unread_story_date = now if self.user.profile.last_seen_on < self.user.profile.unread_cutoff and not force: # if not silent: # logging.info(' ---> [%s] SKIPPING Computing scores: %s (1 week+)' % (self.user, self.feed)) return self ong = self.unread_count_negative ont = self.unread_count_neutral ops = self.unread_count_positive # if not self.feed.fetched_once: # if not silent: # logging.info(' ---> [%s] NOT Computing scores: %s' % (self.user, self.feed)) # self.needs_unread_recalc = False # self.save() # return feed_scores = dict(negative=0, neutral=0, positive=0) # Two weeks in age. If mark_read_date is older, mark old stories as read. date_delta = self.user.profile.unread_cutoff if date_delta < self.mark_read_date: date_delta = self.mark_read_date else: self.mark_read_date = date_delta if self.is_trained: if not stories: stories = cache.get('S:%s' % self.feed_id) unread_story_hashes = self.story_hashes(user_id=self.user_id, feed_ids=[self.feed_id], usersubs=[self], read_filter='unread', group_by_feed=False, cutoff_date=self.user.profile.unread_cutoff) if not stories: stories_db = MStory.objects(story_hash__in=unread_story_hashes) stories = Feed.format_stories(stories_db, self.feed_id) unread_stories = [] for story in stories: if story['story_date'] < date_delta: continue if story['story_hash'] in unread_story_hashes: unread_stories.append(story) if story['story_date'] < oldest_unread_story_date: oldest_unread_story_date = story['story_date'] # if not silent: # logging.info(' ---> [%s] Format stories: %s' % (self.user, datetime.datetime.now() - now)) classifier_feeds = list(MClassifierFeed.objects(user_id=self.user_id, feed_id=self.feed_id, social_user_id=0)) classifier_authors = list(MClassifierAuthor.objects(user_id=self.user_id, feed_id=self.feed_id)) classifier_titles = list(MClassifierTitle.objects(user_id=self.user_id, feed_id=self.feed_id)) classifier_tags = list(MClassifierTag.objects(user_id=self.user_id, feed_id=self.feed_id)) if (not len(classifier_feeds) and not len(classifier_authors) and not len(classifier_titles) and not len(classifier_tags)): self.is_trained = False # if not silent: # logging.info(' ---> [%s] Classifiers: %s (%s)' % (self.user, datetime.datetime.now() - now, classifier_feeds.count() + classifier_authors.count() + classifier_tags.count() + classifier_titles.count())) scores = { 'feed': apply_classifier_feeds(classifier_feeds, self.feed), } for story in unread_stories: scores.update({ 'author' : apply_classifier_authors(classifier_authors, story), 'tags' : apply_classifier_tags(classifier_tags, story), 'title' : apply_classifier_titles(classifier_titles, story), }) max_score = max(scores['author'], scores['tags'], scores['title']) min_score = min(scores['author'], scores['tags'], scores['title']) if max_score > 0: feed_scores['positive'] += 1 elif min_score < 0: feed_scores['negative'] += 1 else: if scores['feed'] > 0: feed_scores['positive'] += 1 elif scores['feed'] < 0: feed_scores['negative'] += 1 else: feed_scores['neutral'] += 1 else: unread_story_hashes = self.story_hashes(user_id=self.user_id, feed_ids=[self.feed_id], usersubs=[self], read_filter='unread', group_by_feed=False, include_timestamps=True, cutoff_date=self.user.profile.unread_cutoff) feed_scores['neutral'] = len(unread_story_hashes) if feed_scores['neutral']: oldest_unread_story_date = datetime.datetime.fromtimestamp(unread_story_hashes[-1][1]) if not silent: logging.user(self.user, '~FBUnread count (~SB%s~SN%s): ~SN(~FC%s~FB/~FC%s~FB/~FC%s~FB) ~SBto~SN (~FC%s~FB/~FC%s~FB/~FC%s~FB)' % (self.feed_id, '/~FMtrained~FB' if self.is_trained else '', ong, ont, ops, feed_scores['negative'], feed_scores['neutral'], feed_scores['positive'])) self.unread_count_positive = feed_scores['positive'] self.unread_count_neutral = feed_scores['neutral'] self.unread_count_negative = feed_scores['negative'] self.unread_count_updated = datetime.datetime.now() self.oldest_unread_story_date = oldest_unread_story_date self.needs_unread_recalc = False self.save() if (self.unread_count_positive == 0 and self.unread_count_neutral == 0): self.mark_feed_read() if not silent: logging.user(self.user, '~FC~SNComputing scores: %s (~SB%s~SN/~SB%s~SN/~SB%s~SN)' % (self.feed, feed_scores['negative'], feed_scores['neutral'], feed_scores['positive'])) self.trim_read_stories() return self
def calculate_feed_scores(self, silent=False, stories_db=None): now = datetime.datetime.utcnow() UNREAD_CUTOFF = now - datetime.timedelta(days=settings.DAYS_OF_UNREAD) if self.user.profile.last_seen_on < UNREAD_CUTOFF: # if not silent: # logging.info(' ---> [%s] SKIPPING Computing scores: %s (1 week+)' % (self.user, self.feed)) return if not self.feed.fetched_once: if not silent: logging.info(' ---> [%s] NOT Computing scores: %s' % (self.user, self.feed)) self.needs_unread_recalc = False self.save() return if not silent: logging.info(' ---> [%s] Computing scores: %s' % (self.user, self.feed)) feed_scores = dict(negative=0, neutral=0, positive=0) # Two weeks in age. If mark_read_date is older, mark old stories as read. date_delta = UNREAD_CUTOFF if date_delta < self.mark_read_date: date_delta = self.mark_read_date else: self.mark_read_date = date_delta read_stories = MUserStory.objects(user_id=self.user.pk, feed_id=self.feed.pk, read_date__gte=self.mark_read_date) # if not silent: # logging.info(' ---> [%s] Read stories: %s' % (self.user, datetime.datetime.now() - now)) read_stories_ids = [] for us in read_stories: if hasattr(us.story, 'story_guid') and isinstance( us.story.story_guid, unicode): read_stories_ids.append(us.story.story_guid) elif hasattr(us.story, 'id') and isinstance(us.story.id, unicode): read_stories_ids.append( us.story.id ) # TODO: Remove me after migration from story.id->guid stories_db = stories_db or MStory.objects(story_feed_id=self.feed.pk, story_date__gte=date_delta) # if not silent: # logging.info(' ---> [%s] MStory: %s' % (self.user, datetime.datetime.now() - now)) oldest_unread_story_date = now unread_stories_db = [] for story in stories_db: if story.story_date < date_delta: continue if hasattr( story, 'story_guid') and story.story_guid not in read_stories_ids: unread_stories_db.append(story) if story.story_date < oldest_unread_story_date: oldest_unread_story_date = story.story_date stories = Feed.format_stories(unread_stories_db, self.feed.pk) # if not silent: # logging.info(' ---> [%s] Format stories: %s' % (self.user, datetime.datetime.now() - now)) classifier_feeds = MClassifierFeed.objects(user_id=self.user.pk, feed_id=self.feed.pk) classifier_authors = MClassifierAuthor.objects(user_id=self.user.pk, feed_id=self.feed.pk) classifier_titles = MClassifierTitle.objects(user_id=self.user.pk, feed_id=self.feed.pk) classifier_tags = MClassifierTag.objects(user_id=self.user.pk, feed_id=self.feed.pk) # if not silent: # logging.info(' ---> [%s] Classifiers: %s (%s)' % (self.user, datetime.datetime.now() - now, classifier_feeds.count() + classifier_authors.count() + classifier_tags.count() + classifier_titles.count())) scores = { 'feed': apply_classifier_feeds(classifier_feeds, self.feed), } for story in stories: classifier_authors.rewind() classifier_tags.rewind() classifier_titles.rewind() scores.update({ 'author': apply_classifier_authors(classifier_authors, story), 'tags': apply_classifier_tags(classifier_tags, story), 'title': apply_classifier_titles(classifier_titles, story), }) max_score = max(scores['author'], scores['tags'], scores['title']) min_score = min(scores['author'], scores['tags'], scores['title']) if max_score > 0: feed_scores['positive'] += 1 elif min_score < 0: feed_scores['negative'] += 1 else: if scores['feed'] > 0: feed_scores['positive'] += 1 elif scores['feed'] < 0: feed_scores['negative'] += 1 else: feed_scores['neutral'] += 1 # if not silent: # logging.info(' ---> [%s] End classifiers: %s' % (self.user, datetime.datetime.now() - now)) self.unread_count_positive = feed_scores['positive'] self.unread_count_neutral = feed_scores['neutral'] self.unread_count_negative = feed_scores['negative'] self.unread_count_updated = datetime.datetime.now() self.oldest_unread_story_date = oldest_unread_story_date self.needs_unread_recalc = False self.save() if (self.unread_count_positive == 0 and self.unread_count_neutral == 0): self.mark_feed_read() cache.delete('usersub:%s' % self.user.id) return