示例#1
0
def collect_subbasin(payload, shapes):
    # Gather weather stations and their data
    # collectively to avoid re-reading stations
    # that are shared across huc-12s
    huc12_ws = nearest_weather_stations(shapes)
    # Find the weather stations unique across all huc12s
    unique_ws = {w.station: w for w in huc12_ws}.values()
    # Find largest time range for which ALL weather stations have values,
    # then limit all stations to that range.
    begyear = int(max([w.begyear for w in huc12_ws]))
    endyear = int(min([w.endyear for w in huc12_ws]))
    huc12_ws = [w._replace(begyear=begyear)._replace(endyear=endyear)
                for w in huc12_ws]
    # Gather the temp and prcp values for each unique weather stations
    unique_wd = weather_data(unique_ws, begyear, endyear)

    # Get the stations and averaged tmp/prcp data for a specific huc-12
    def get_weather(watershed_id):
        ws = [w for w in huc12_ws if w.watershed_id == watershed_id]
        stations = [w.station for w in ws]
        temps_by_station = [unique_wd[0][station] for station in stations]
        prcps_by_station = [unique_wd[1][station] for station in stations]
        return (ws, (average_weather_data(temps_by_station),
                     average_weather_data(prcps_by_station)))
    # Build the GMS data for each huc-12
    return [
        collect_data(convert_data(payload, wkaoi), aoi, watershed_id,
                     get_weather(watershed_id))
        for (wkaoi, watershed_id, aoi) in shapes
    ]
示例#2
0
def get_weather_simulation_for_project(project, category):
    wss = nearest_weather_stations([(None, None, project.area_of_interest)])
    data = []
    errs = []

    for ws in wss:
        url = settings.WEATHER_DATA_BUCKET_URL.format(category=category,
                                                      station=ws.station)

        # Ensure the station exists, if not exit quickly
        res = requests.head(url)
        if not res.ok:
            errs.append(f'Error {res.status_code} while getting data for'
                        f' {category}/{ws.station}')
            return {}, errs

        # Fetch and parse station weather data, noting any errors
        with closing(requests.get(url, stream=True)) as r:
            ws_data, ws_errs = get_weather_modifications(r.raw)
            data.append(ws_data)
            errs += ws_errs

    # Respond with errors, if any
    if errs:
        return {}, errs

    # Check that the datasets have the same characteristics
    for c in ['WxYrBeg', 'WxYrEnd', 'WxYrs']:
        s = set([d[c] for d in data])
        if len(s) > 1:
            errs.append(f'{c} does not match in dataset: {s}')

    # Respond with errors, if any
    if errs:
        return {}, errs

    # Final result has characteristics of the first station (which would be
    # identical to all other stations), and the precipitation and temperature
    # data which is the mean of all stations.
    return {
        'WxYrBeg': data[0]['WxYrBeg'],
        'WxYrEnd': data[0]['WxYrEnd'],
        'WxYrs': data[0]['WxYrs'],
        'Prec': average_weather_data([d['Prec'] for d in data]),
        'Temp': average_weather_data([d['Temp'] for d in data]),
    }, errs
示例#3
0
def collect_data(geop_results, geojson, watershed_id=None, weather=None):
    geop_result = {k: v for r in geop_results for k, v in r.items()}

    geom = GEOSGeometry(geojson, srid=4326)
    area = geom.transform(5070, clone=True).area  # Square Meters

    # Data Model is called z by convention
    z = settings.GWLFE_DEFAULTS.copy()

    z['watershed_id'] = watershed_id

    # Statically calculated lookup values
    z['DayHrs'] = day_lengths(geom)

    # Data from the Weather Stations dataset
    if weather is not None:
        ws, wd = weather
    else:
        ws = nearest_weather_stations([(None, watershed_id, geojson)])

    z['Grow'] = growing_season(ws)
    z['Acoef'] = erosion_coeff(ws, z['Grow'])
    z['PcntET'] = et_adjustment(ws)
    z['WxYrBeg'] = int(max([w.begyear for w in ws]))
    z['WxYrEnd'] = int(min([w.endyear for w in ws]))
    z['WxYrs'] = z['WxYrEnd'] - z['WxYrBeg'] + 1

    # Data from the County Animals dataset
    ag_lscp = ag_ls_c_p(geom)
    z['C'][0] = ag_lscp.hp_c
    z['C'][1] = ag_lscp.crop_c

    livestock_aeu, poultry_aeu, population = animal_energy_units(geom)
    z['AEU'] = livestock_aeu / (area * ACRES_PER_SQM)
    z['n41j'] = livestock_aeu
    z['n41k'] = poultry_aeu
    z['n41l'] = livestock_aeu + poultry_aeu
    z['NumAnimals'] = [int(population.get(animal, 0))
                       for animal in ANIMAL_KEYS]

    z['ManNitr'], z['ManPhos'] = manure_spread(z['AEU'])

    # Data from Streams dataset
    z['StreamLength'] = stream_length(geom) or 10   # Meters
    z['n42b'] = round(z['StreamLength'] / 1000, 1)  # Kilometers

    # Data from Point Source Discharge dataset
    n_load, p_load, discharge = point_source_discharge(geom, area,
                                                       drb=geom.within(DRB))
    z['PointNitr'] = n_load
    z['PointPhos'] = p_load
    z['PointFlow'] = discharge

    # Data from National Weather dataset
    if weather is None:
        wd = weather_data(ws, z['WxYrBeg'], z['WxYrEnd'])
        temps_dict, prcps_dict = wd
        temps = average_weather_data(temps_dict.values())
        prcps = average_weather_data(prcps_dict.values())
    else:
        temps, prcps = wd
    z['Temp'] = temps
    z['Prec'] = prcps

    # Begin processing geop_result

    # Set stream related variables to zero if AoI does not contain
    # any streams.
    if 'ag_stream_pct' in geop_result:
        z['AgLength'] = geop_result['ag_stream_pct'] * z['StreamLength']
        z['UrbLength'] = z['StreamLength'] - z['AgLength']
        z['n42'] = round(z['AgLength'] / 1000, 1)
        z['n46e'] = (geop_result['med_high_urban_stream_pct'] *
                     z['StreamLength'] / 1000)
        z['n46f'] = (geop_result['low_urban_stream_pct'] *
                     z['StreamLength'] / 1000)
    else:
        z['AgLength'] = 0
        z['UrbLength'] = 0
        z['n42'] = 0
        z['n46e'] = 0
        z['n46f'] = 0

    z['CN'] = geop_result['cn']
    z['SedPhos'] = geop_result['soilp']
    z['Area'] = [percent * area * HECTARES_PER_SQM
                 for percent in geop_result['landuse_pcts']]

    # Immediately return an error if z['Area'] is a list of 0s
    if sum(z['Area']) == 0:
        raise Exception(NO_LAND_COVER)

    z['UrbAreaTotal'] = sum(z['Area'][NRur:])
    z['PhosConc'] = phosphorus_conc(z['SedPhos'])

    z['NumNormalSys'] = num_normal_sys(z['Area'])

    z['AgSlope3'] = geop_result['ag_slope_3_pct'] * area * HECTARES_PER_SQM
    z['AgSlope3To8'] = (geop_result['ag_slope_3_8_pct'] *
                        area * HECTARES_PER_SQM)
    z['n41'] = geop_result['n41']

    z['AvSlope'] = geop_result['avg_slope']

    z['AvKF'] = geop_result['avg_kf']
    z['KF'] = geop_result['kf']

    z['KV'] = kv_coefficient(geop_result['landuse_pcts'], z['Grow'])

    # Original at [email protected]:9803-9807
    z['n23'] = z['Area'][1]    # Row Crops Area
    z['n23b'] = z['Area'][13]  # High Density Mixed Urban Area
    z['n24'] = z['Area'][0]    # Hay/Pasture Area
    z['n24b'] = z['Area'][11]  # Low Density Mixed Urban Area

    z['SedDelivRatio'] = sediment_delivery_ratio(area * SQKM_PER_SQM)
    z['TotArea'] = area * HECTARES_PER_SQM
    z['GrNitrConc'] = geop_result['gr_nitr_conc']
    z['GrPhosConc'] = geop_result['gr_phos_conc']
    z['MaxWaterCap'] = geop_result['avg_awc']
    z['SedAFactor'] = sed_a_factor(geop_result['landuse_pcts'],
                                   z['CN'], z['AEU'], z['AvKF'], z['AvSlope'])

    # Use zeroed out stream variables if there are no streams in the AoI
    if 'lu_stream_pct' in geop_result:
        z['LS'] = ls_factors(geop_result['lu_stream_pct'], z['StreamLength'],
                             z['Area'], z['AvSlope'], ag_lscp)
    else:
        zeroed_lu_stream_pct = [0.0] * 16
        z['LS'] = ls_factors(zeroed_lu_stream_pct, 0,
                             z['Area'], z['AvSlope'], ag_lscp)

    z['P'] = p_factors(z['AvSlope'], ag_lscp)

    z['SedNitr'] = geop_result['soiln']

    z['RecessionCoef'] = geop_result['recess_coef']

    return z