def gen_clsag_sig(self, ring_size=11, index=None): msg = random.bytes(32) amnt = crypto.sc_init(random.uniform(0xFFFFFF) + 12) priv = crypto.random_scalar() msk = crypto.random_scalar() alpha = crypto.random_scalar() P = crypto.scalarmult_base(priv) C = crypto.add_keys2(msk, amnt, crypto.xmr_H()) Cp = crypto.add_keys2(alpha, amnt, crypto.xmr_H()) ring = [] for i in range(ring_size - 1): tk = TmpKey( crypto.encodepoint( crypto.scalarmult_base(crypto.random_scalar())), crypto.encodepoint( crypto.scalarmult_base(crypto.random_scalar())), ) ring.append(tk) index = index if index is not None else random.uniform(len(ring)) ring.insert(index, TmpKey(crypto.encodepoint(P), crypto.encodepoint(C))) ring2 = list(ring) mg_buffer = [] self.assertTrue( crypto.point_eq(crypto.scalarmult_base(priv), crypto.decodepoint(ring[index].dest))) self.assertTrue( crypto.point_eq( crypto.scalarmult_base(crypto.sc_sub(msk, alpha)), crypto.point_sub(crypto.decodepoint(ring[index].commitment), Cp), )) mlsag.generate_clsag_simple( msg, ring, CtKey(priv, msk), alpha, Cp, index, mg_buffer, ) sD = crypto.decodepoint(mg_buffer[-1]) sc1 = crypto.decodeint(mg_buffer[-2]) scalars = [crypto.decodeint(x) for x in mg_buffer[1:-2]] H = crypto.new_point() sI = crypto.new_point() crypto.hash_to_point_into(H, crypto.encodepoint(P)) crypto.scalarmult_into(sI, H, priv) # I = p*H return msg, scalars, sc1, sI, sD, ring2, Cp
def verify_batch(self, proofs, single_optim=True, proof_v8=False): """ BP batch verification :param proofs: :param single_optim: single proof memory optimization :param proof_v8: previous testnet version :return: """ max_length = 0 for proof in proofs: utils.ensure(is_reduced(proof.taux), "Input scalar not in range") utils.ensure(is_reduced(proof.mu), "Input scalar not in range") utils.ensure(is_reduced(proof.a), "Input scalar not in range") utils.ensure(is_reduced(proof.b), "Input scalar not in range") utils.ensure(is_reduced(proof.t), "Input scalar not in range") utils.ensure(len(proof.V) >= 1, "V does not have at least one element") utils.ensure(len(proof.L) == len(proof.R), "|L| != |R|") utils.ensure(len(proof.L) > 0, "Empty proof") max_length = max(max_length, len(proof.L)) utils.ensure(max_length < 32, "At least one proof is too large") maxMN = 1 << max_length logN = 6 N = 1 << logN tmp = _ensure_dst_key() # setup weighted aggregates is_single = len(proofs) == 1 and single_optim # ph4 z1 = init_key(_ZERO) z3 = init_key(_ZERO) m_z4 = vector_dup(_ZERO, maxMN) if not is_single else None m_z5 = vector_dup(_ZERO, maxMN) if not is_single else None m_y0 = init_key(_ZERO) y1 = init_key(_ZERO) muex_acc = init_key(_ONE) Gprec = self._gprec_aux(maxMN) Hprec = self._hprec_aux(maxMN) for proof in proofs: M = 1 logM = 0 while M <= _BP_M and M < len(proof.V): logM += 1 M = 1 << logM utils.ensure(len(proof.L) == 6 + logM, "Proof is not the expected size") MN = M * N weight_y = crypto.encodeint(crypto.random_scalar()) weight_z = crypto.encodeint(crypto.random_scalar()) # Reconstruct the challenges hash_cache = hash_vct_to_scalar(None, proof.V) y = hash_cache_mash(None, hash_cache, proof.A, proof.S) utils.ensure(y != _ZERO, "y == 0") z = hash_to_scalar(None, y) copy_key(hash_cache, z) utils.ensure(z != _ZERO, "z == 0") x = hash_cache_mash(None, hash_cache, z, proof.T1, proof.T2) utils.ensure(x != _ZERO, "x == 0") x_ip = hash_cache_mash(None, hash_cache, x, proof.taux, proof.mu, proof.t) utils.ensure(x_ip != _ZERO, "x_ip == 0") # PAPER LINE 61 sc_mulsub(m_y0, proof.taux, weight_y, m_y0) zpow = vector_powers(z, M + 3) k = _ensure_dst_key() ip1y = vector_power_sum(y, MN) sc_mulsub(k, zpow[2], ip1y, _ZERO) for j in range(1, M + 1): utils.ensure(j + 2 < len(zpow), "invalid zpow index") sc_mulsub(k, zpow.to(j + 2), _BP_IP12, k) # VERIFY_line_61rl_new sc_muladd(tmp, z, ip1y, k) sc_sub(tmp, proof.t, tmp) sc_muladd(y1, tmp, weight_y, y1) weight_y8 = init_key(weight_y) if not proof_v8: weight_y8 = sc_mul(None, weight_y, _EIGHT) muex = MultiExpSequential(points=[pt for pt in proof.V]) for j in range(len(proof.V)): sc_mul(tmp, zpow[j + 2], weight_y8) muex.add_scalar(init_key(tmp)) sc_mul(tmp, x, weight_y8) muex.add_pair(init_key(tmp), proof.T1) xsq = _ensure_dst_key() sc_mul(xsq, x, x) sc_mul(tmp, xsq, weight_y8) muex.add_pair(init_key(tmp), proof.T2) weight_z8 = init_key(weight_z) if not proof_v8: weight_z8 = sc_mul(None, weight_z, _EIGHT) muex.add_pair(weight_z8, proof.A) sc_mul(tmp, x, weight_z8) muex.add_pair(init_key(tmp), proof.S) multiexp(tmp, muex, False) add_keys(muex_acc, muex_acc, tmp) del muex # Compute the number of rounds for the inner product rounds = logM + logN utils.ensure(rounds > 0, "Zero rounds") # PAPER LINES 21-22 # The inner product challenges are computed per round w = _ensure_dst_keyvect(None, rounds) for i in range(rounds): hash_cache_mash(tmp_bf_0, hash_cache, proof.L[i], proof.R[i]) w.read(i, tmp_bf_0) utils.ensure(w[i] != _ZERO, "w[i] == 0") # Basically PAPER LINES 24-25 # Compute the curvepoints from G[i] and H[i] yinvpow = init_key(_ONE) ypow = init_key(_ONE) yinv = invert(None, y) self.gc(61) winv = _ensure_dst_keyvect(None, rounds) for i in range(rounds): invert(tmp_bf_0, w.to(i)) winv.read(i, tmp_bf_0) self.gc(62) g_scalar = _ensure_dst_key() h_scalar = _ensure_dst_key() twoN = self._two_aux(N) for i in range(MN): copy_key(g_scalar, proof.a) sc_mul(h_scalar, proof.b, yinvpow) for j in range(rounds - 1, -1, -1): J = len(w) - j - 1 if (i & (1 << j)) == 0: sc_mul(g_scalar, g_scalar, winv.to(J)) sc_mul(h_scalar, h_scalar, w.to(J)) else: sc_mul(g_scalar, g_scalar, w.to(J)) sc_mul(h_scalar, h_scalar, winv.to(J)) # Adjust the scalars using the exponents from PAPER LINE 62 sc_add(g_scalar, g_scalar, z) utils.ensure(2 + i // N < len(zpow), "invalid zpow index") utils.ensure(i % N < len(twoN), "invalid twoN index") sc_mul(tmp, zpow.to(2 + i // N), twoN.to(i % N)) sc_muladd(tmp, z, ypow, tmp) sc_mulsub(h_scalar, tmp, yinvpow, h_scalar) if not is_single: # ph4 sc_mulsub(m_z4[i], g_scalar, weight_z, m_z4[i]) sc_mulsub(m_z5[i], h_scalar, weight_z, m_z5[i]) else: sc_mul(tmp, g_scalar, weight_z) sub_keys(muex_acc, muex_acc, scalarmult_key(tmp, Gprec.to(i), tmp)) sc_mul(tmp, h_scalar, weight_z) sub_keys(muex_acc, muex_acc, scalarmult_key(tmp, Hprec.to(i), tmp)) if i != MN - 1: sc_mul(yinvpow, yinvpow, yinv) sc_mul(ypow, ypow, y) if i & 15 == 0: self.gc(62) del (g_scalar, h_scalar, twoN) self.gc(63) sc_muladd(z1, proof.mu, weight_z, z1) muex = MultiExpSequential( point_fnc=lambda i, d: proof.L[i // 2] if i & 1 == 0 else proof.R[i // 2] ) for i in range(rounds): sc_mul(tmp, w[i], w[i]) sc_mul(tmp, tmp, weight_z8) muex.add_scalar(tmp) sc_mul(tmp, winv[i], winv[i]) sc_mul(tmp, tmp, weight_z8) muex.add_scalar(tmp) acc = multiexp(None, muex, False) add_keys(muex_acc, muex_acc, acc) sc_mulsub(tmp, proof.a, proof.b, proof.t) sc_mul(tmp, tmp, x_ip) sc_muladd(z3, tmp, weight_z, z3) sc_sub(tmp, m_y0, z1) z3p = sc_sub(None, z3, y1) check2 = crypto.encodepoint( crypto.ge25519_double_scalarmult_base_vartime( crypto.decodeint(z3p), crypto.xmr_H(), crypto.decodeint(tmp) ) ) add_keys(muex_acc, muex_acc, check2) if not is_single: # ph4 muex = MultiExpSequential( point_fnc=lambda i, d: Gprec.to(i // 2) if i & 1 == 0 else Hprec.to(i // 2) ) for i in range(maxMN): muex.add_scalar(m_z4[i]) muex.add_scalar(m_z5[i]) add_keys(muex_acc, muex_acc, multiexp(None, muex, True)) if muex_acc != _ONE: raise ValueError("Verification failure at step 2") return True
_BP_LOG_N = const(6) _BP_N = const(64) # 1 << _BP_LOG_N _BP_M = const(16) # maximal number of bulletproofs _ZERO = b"\x00" * 32 _ONE = b"\x01" + b"\x00" * 31 # _TWO = b"\x02" + b"\x00" * 31 _EIGHT = b"\x08" + b"\x00" * 31 _INV_EIGHT = crypto.INV_EIGHT _MINUS_ONE = b"\xec\xd3\xf5\x5c\x1a\x63\x12\x58\xd6\x9c\xf7\xa2\xde\xf9\xde\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10" # _MINUS_INV_EIGHT = b"\x74\xa4\x19\x7a\xf0\x7d\x0b\xf7\x05\xc2\xda\x25\x2b\x5c\x0b\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a" # Monero H point _XMR_H = b"\x8b\x65\x59\x70\x15\x37\x99\xaf\x2a\xea\xdc\x9f\xf1\xad\xd0\xea\x6c\x72\x51\xd5\x41\x54\xcf\xa9\x2c\x17\x3a\x0d\xd3\x9c\x1f\x94" _XMR_HP = crypto.xmr_H() # ip12 = inner_product(oneN, twoN); _BP_IP12 = b"\xff\xff\xff\xff\xff\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" # # Rct keys operations # tmp_x are global working registers to minimize memory allocations / heap fragmentation. # Caution has to be exercised when using the registers and operations using the registers # tmp_bf_0 = bytearray(32) tmp_bf_1 = bytearray(32) tmp_bf_2 = bytearray(32) tmp_bf_exp = bytearray(11 + 32 + 4)
def test_h(self): H = unhexlify( b"8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94" ) self.assertEqual(crypto.encodepoint(crypto.xmr_H()), H)
def prove_range_mem(amount, last_mask=None): """ Memory optimized range proof. Gives C, and mask such that \sumCi = C c.f. http:#eprint.iacr.org/2015/1098 section 5.1 Ci is a commitment to either 0 or 2^i, i=0,...,63 thus this proves that "amount" is in [0, 2^ATOMS] mask is a such that C = aG + bH, and b = amount :param amount: :param last_mask: ai[ATOMS-1] will be computed as \sum_{i=0}^{ATOMS-2} a_i - last_mask :param use_asnl: use ASNL, used before Borromean :return: sumCi, mask, RangeSig. sumCi is Pedersen commitment on the amount value. sumCi = aG + amount*H mask is "a" from the Pedersent commitment above. """ res = bytearray(32 * (64 + 64 + 64 + 1)) mv = memoryview(res) gc.collect() def as0(mv, x, i): crypto.encodeint_into(mv[32 * i :], x) def as1(mv, x, i): crypto.encodeint_into(mv[32 * 64 + 32 * i :], x) def aci(mv, x, i): crypto.encodepoint_into(mv[32 * 64 * 2 + 32 + 32 * i :], x) n = 64 bb = d2b(amount, n) # gives binary form of bb in "digits" binary digits ai = key_zero_vector(n) a = crypto.sc_0() C = crypto.identity() alpha = key_zero_vector(n) c_H = crypto.xmr_H() kck = crypto.get_keccak() # ee computation # First pass, generates: ai, alpha, Ci, ee, s1 for ii in range(n): ai[ii] = crypto.random_scalar() if last_mask is not None and ii == 64 - 1: ai[ii] = crypto.sc_sub(last_mask, a) a = crypto.sc_add( a, ai[ii] ) # creating the total mask since you have to pass this to receiver... alpha[ii] = crypto.random_scalar() L = crypto.scalarmult_base(alpha[ii]) if bb[ii] == 0: Ctmp = crypto.scalarmult_base(ai[ii]) else: Ctmp = crypto.point_add(crypto.scalarmult_base(ai[ii]), c_H) C = crypto.point_add(C, Ctmp) aci(mv, Ctmp, ii) if bb[ii] == 0: si = crypto.random_scalar() c = crypto.hash_to_scalar(crypto.encodepoint(L)) L = crypto.add_keys2(si, c, crypto.point_sub(Ctmp, c_H)) kck.update(crypto.encodepoint(L)) as1(mv, si, ii) else: kck.update(crypto.encodepoint(L)) c_H = crypto.point_double(c_H) # Compute ee, memory cleanup ee = crypto.decodeint(kck.digest()) crypto.encodeint_into(ee, mv[64 * 32 * 2 :]) del kck gc.collect() # Second phase computes: s0, s1 c_H = crypto.xmr_H() for jj in range(n): if not bb[jj]: s0 = crypto.sc_mulsub(ai[jj], ee, alpha[jj]) else: s0 = crypto.random_scalar() Ctmp = crypto.decodepoint( mv[32 * 64 * 2 + 32 + 32 * jj : 32 * 64 * 2 + 32 + 32 * jj + 32] ) LL = crypto.add_keys2(s0, ee, Ctmp) cc = crypto.hash_to_scalar(crypto.encodepoint(LL)) si = crypto.sc_mulsub(ai[jj], cc, alpha[jj]) as1(mv, si, jj) as0(mv, s0, jj) c_H = crypto.point_double(c_H) gc.collect() return C, a, res
def prove_range_borromean(amount, last_mask): """Calculates Borromean range proof""" # The large chunks allocated first to avoid potential memory fragmentation issues. ai = bytearray(32 * 64) alphai = bytearray(32 * 64) Cis = bytearray(32 * 64) s0s = bytearray(32 * 64) s1s = bytearray(32 * 64) buff = bytearray(32) ee_bin = bytearray(32) a = crypto.sc_init(0) si = crypto.sc_init(0) c = crypto.sc_init(0) ee = crypto.sc_init(0) tmp_ai = crypto.sc_init(0) tmp_alpha = crypto.sc_init(0) C_acc = crypto.identity() C_h = crypto.xmr_H() C_tmp = crypto.identity() L = crypto.identity() kck = crypto.get_keccak() for ii in range(64): crypto.random_scalar(tmp_ai) if last_mask is not None and ii == 63: crypto.sc_sub_into(tmp_ai, last_mask, a) crypto.sc_add_into(a, a, tmp_ai) crypto.random_scalar(tmp_alpha) crypto.scalarmult_base_into(L, tmp_alpha) crypto.scalarmult_base_into(C_tmp, tmp_ai) # if 0: C_tmp += Zero (nothing is added) # if 1: C_tmp += 2^i*H # 2^i*H is already stored in C_h if (amount >> ii) & 1 == 1: crypto.point_add_into(C_tmp, C_tmp, C_h) crypto.point_add_into(C_acc, C_acc, C_tmp) # Set Ci[ii] to sigs crypto.encodepoint_into(Cis, C_tmp, ii << 5) crypto.encodeint_into(ai, tmp_ai, ii << 5) crypto.encodeint_into(alphai, tmp_alpha, ii << 5) if ((amount >> ii) & 1) == 0: crypto.random_scalar(si) crypto.encodepoint_into(buff, L) crypto.hash_to_scalar_into(c, buff) crypto.point_sub_into(C_tmp, C_tmp, C_h) crypto.add_keys2_into(L, si, c, C_tmp) crypto.encodeint_into(s1s, si, ii << 5) crypto.encodepoint_into(buff, L) kck.update(buff) crypto.point_double_into(C_h, C_h) # Compute ee tmp_ee = kck.digest() crypto.decodeint_into(ee, tmp_ee) del (tmp_ee, kck) C_h = crypto.xmr_H() gc.collect() # Second pass, s0, s1 for ii in range(64): crypto.decodeint_into(tmp_alpha, alphai, ii << 5) crypto.decodeint_into(tmp_ai, ai, ii << 5) if ((amount >> ii) & 1) == 0: crypto.sc_mulsub_into(si, tmp_ai, ee, tmp_alpha) crypto.encodeint_into(s0s, si, ii << 5) else: crypto.random_scalar(si) crypto.encodeint_into(s0s, si, ii << 5) crypto.decodepoint_into(C_tmp, Cis, ii << 5) crypto.add_keys2_into(L, si, ee, C_tmp) crypto.encodepoint_into(buff, L) crypto.hash_to_scalar_into(c, buff) crypto.sc_mulsub_into(si, tmp_ai, c, tmp_alpha) crypto.encodeint_into(s1s, si, ii << 5) crypto.point_double_into(C_h, C_h) crypto.encodeint_into(ee_bin, ee) del (ai, alphai, buff, tmp_ai, tmp_alpha, si, c, ee, C_tmp, C_h, L) gc.collect() return C_acc, a, [s0s, s1s, ee_bin, Cis]