def evaluate_model(model, criterion, test_loader, loggers, activations_collectors, args):
    # This sample application can be invoked to evaluate the accuracy of your model on
    # the test dataset.
    # You can optionally quantize the model to 8-bit integer before evaluation.
    # For example:
    # python3 compress_classifier.py --arch resnet20_cifar  ../data.cifar10 -p=50 --resume=checkpoint.pth.tar --evaluate

    if not isinstance(loggers, list):
        loggers = [loggers]

    if args.quantize_eval:
        model.cpu()
        quantizer = quantization.SymmetricLinearQuantizer(model, args.qe_bits_acts, args.qe_bits_wts,
                                                          args.qe_bits_accum, args.qe_clip_acts,
                                                          args.qe_no_clip_layers)
        quantizer.prepare_model()
        model.cuda()

    top1, _, _ = test(test_loader, model, criterion, loggers, activations_collectors, args=args)

    if args.quantize_eval:
        checkpoint_name = 'quantized'
        apputils.save_checkpoint(0, args.arch, model, optimizer=None, best_top1=top1,
                                 name='_'.split(args.name, checkpoint_name) if args.name else checkpoint_name,
                                 dir=msglogger.logdir)
示例#2
0
def test_load_gpu_model_on_cpu_with_thinning():
    # Issue #148
    # 1. create a GPU model and remove 50% of the filters in one of the layers (thninning)
    # 2. save the thinned model in a checkpoint file
    # 3. load the checkpoint and place it on the CPU
    CPU_DEVICE_ID = -1
    gpu_model = create_model(False, 'cifar10', 'resnet20_cifar')
    conv_pname = "module.layer1.0.conv1.weight"
    conv_p = distiller.model_find_param(gpu_model, conv_pname)
    pruner = distiller.pruning.L1RankedStructureParameterPruner("test_pruner", group_type="Filters",
                                                                desired_sparsity=0.5, weights=conv_pname)
    zeros_mask_dict = distiller.create_model_masks_dict(gpu_model)
    pruner.set_param_mask(conv_p, conv_pname, zeros_mask_dict, meta=None)

    # Use the mask to prune
    zeros_mask_dict[conv_pname].apply_mask(conv_p)
    distiller.remove_filters(gpu_model, zeros_mask_dict, 'resnet20_cifar', 'cifar10', optimizer=None)
    assert hasattr(gpu_model, 'thinning_recipes')
    scheduler = distiller.CompressionScheduler(gpu_model)
    save_checkpoint(epoch=0, arch='resnet20_cifar', model=gpu_model, scheduler=scheduler, optimizer=None)

    CPU_DEVICE_ID = -1
    cpu_model = create_model(False, 'cifar10', 'resnet20_cifar', device_ids=CPU_DEVICE_ID)
    load_checkpoint(cpu_model, "checkpoint.pth.tar")
    assert distiller.model_device(cpu_model) == 'cpu'
def evaluate_model(model, criterion, train_loader, test_loader, loggers, args):
    # This sample application can be invoked to evaluate the accuracy of your model on
    # the test dataset.
    # You can optionally quantize the model to 8-bit integer before evaluation.
    # For example:
    # python3 compress_classifier.py --arch resnet20_cifar  ../data.cifar10 -p=50 --resume=checkpoint.pth.tar --evaluate

    if not isinstance(loggers, list):
        loggers = [loggers]

    if args.quantize_method:
        if args.quantize_method == "linear":
            quantizer = quantization.SymmetricLinearQuantizer(
                model, args.act_bits, args.weight_bits)
        if args.quantize_method == "ocs":
            quantizer = quantization.OCSQuantizer(
                model,
                args.act_bits,
                args.weight_bits,
                weight_expand_ratio=args.weight_expand_ratio,
                weight_clip_threshold=args.weight_clip_threshold,
                act_expand_ratio=args.act_expand_ratio,
                act_clip_threshold=args.act_clip_threshold)

        model.cpu()
        quantizer.prepare_model()
        model.cuda()

        if args.quantize_method == "ocs":
            # Profile the activation first for ocs
            quantization.ocs_set_profile_mode(True)
            _ = profile_for_quantization(train_loader, model, criterion,
                                         loggers, args)
            quantization.ocs_set_profile_mode(False)

    end = time.time()
    top1, _, _ = test(test_loader, model, criterion, loggers, args=args)
    msglogger.info('==> Test runtime: %d' % (time.time() - end))

    if args.quantize_method:
        checkpoint_name = 'quantized'
        apputils.save_checkpoint(
            0,
            args.arch,
            model,
            optimizer=None,
            best_top1=top1,
            name=args.name if args.name else checkpoint_name,
            dir=msglogger.logdir)
def main():
    global msglogger
    check_pytorch_version()
    args = parser.parse_args()
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    msglogger = apputils.config_pylogger(os.path.join(script_dir, 'logging.conf'), args.name, args.output_dir)

    # Log various details about the execution environment.  It is sometimes useful
    # to refer to past experiment executions and this information may be useful.
    apputils.log_execution_env_state(sys.argv, gitroot=module_path)
    msglogger.debug("Distiller: %s", distiller.__version__)

    start_epoch = 0
    best_epochs = [distiller.MutableNamedTuple({'epoch': 0, 'top1': 0, 'sparsity': 0})
                   for i in range(args.num_best_scores)]

    if args.deterministic:
        # Experiment reproducibility is sometimes important.  Pete Warden expounded about this
        # in his blog: https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/
        # In Pytorch, support for deterministic execution is still a bit clunky.
        if args.workers > 1:
            msglogger.error('ERROR: Setting --deterministic requires setting --workers/-j to 0 or 1')
            exit(1)
        # Use a well-known seed, for repeatability of experiments
        torch.manual_seed(0)
        random.seed(0)
        np.random.seed(0)
        cudnn.deterministic = True
    else:
        # This issue: https://github.com/pytorch/pytorch/issues/3659
        # Implies that cudnn.benchmark should respect cudnn.deterministic, but empirically we see that
        # results are not re-produced when benchmark is set. So enabling only if deterministic mode disabled.
        cudnn.benchmark = True

    if args.gpus is not None:
        try:
            args.gpus = [int(s) for s in args.gpus.split(',')]
        except ValueError:
            msglogger.error('ERROR: Argument --gpus must be a comma-separated list of integers only')
            exit(1)
        available_gpus = torch.cuda.device_count()
        for dev_id in args.gpus:
            if dev_id >= available_gpus:
                msglogger.error('ERROR: GPU device ID {0} requested, but only {1} devices available'
                                .format(dev_id, available_gpus))
                exit(1)
        # Set default device in case the first one on the list != 0
        torch.cuda.set_device(args.gpus[0])

    # Infer the dataset from the model name
    if 'cinic' in args.arch:
        args.dataset = 'cinic10'
    else:
        args.dataset = 'cifar10' if 'cifar' in args.arch else 'imagenet'
    args.num_classes = 10 if args.dataset in ['cifar10', 'cinic10'] else 1000

    if args.earlyexit_thresholds:
        args.num_exits = len(args.earlyexit_thresholds) + 1
        args.loss_exits = [0] * args.num_exits
        args.losses_exits = []
        args.exiterrors = []

    # Create the model
    #model = create_model(args.pretrained, args.dataset, args.arch,
    #                     parallel=not args.load_serialized, device_ids=args.gpus)
    model = create_model(False, args.dataset, args.arch, device_ids=args.gpus) # Get arch state_dict
      
    
    compression_scheduler = None
    # Create a couple of logging backends.  TensorBoardLogger writes log files in a format
    # that can be read by Google's Tensor Board.  PythonLogger writes to the Python logger.
    tflogger = TensorBoardLogger(msglogger.logdir)
    pylogger = PythonLogger(msglogger)

    # capture thresholds for early-exit training
    if args.earlyexit_thresholds:
        msglogger.info('=> using early-exit threshold values of %s', args.earlyexit_thresholds)

    # We can optionally resume from a checkpoint
    if args.resume:
        #model, compression_scheduler, start_epoch = apputils.load_checkpoint(
        #    model, chkpt_file=args.resume)
        
        # Load Pre-trained Model
        chkpt_file=args.resume
        print("=> loading checkpoint %s" % chkpt_file)
        checkpoint = torch.load(chkpt_file)
        model.load_state_dict(checkpoint['net'])  

    # Define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()
    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)
    msglogger.info('Optimizer Type: %s', type(optimizer))
    msglogger.info('Optimizer Args: %s', optimizer.defaults)

    if args.ADC:
        return automated_deep_compression(model, criterion, pylogger, args)

    # This sample application can be invoked to produce various summary reports.
    if args.summary:
        return summarize_model(model, args.dataset, which_summary=args.summary)

    # Load the datasets: the dataset to load is inferred from the model name passed
    # in args.arch.  The default dataset is ImageNet, but if args.arch contains the
    # substring "_cifar", then cifar10 is used.
    train_loader, val_loader, test_loader, _ = apputils.load_data(
        args.dataset, os.path.expanduser(args.data), args.batch_size,
        args.workers, args.validation_size, args.deterministic)
    msglogger.info('Dataset sizes:\n\ttraining=%d\n\tvalidation=%d\n\ttest=%d',
                   len(train_loader.sampler), len(val_loader.sampler), len(test_loader.sampler))

    activations_collectors = create_activation_stats_collectors(model, collection_phase=args.activation_stats)

    if args.sensitivity is not None:
        return sensitivity_analysis(model, criterion, test_loader, pylogger, args)

    if args.evaluate:
        return evaluate_model(model, criterion, test_loader, pylogger, activations_collectors, args)

    if args.compress:
        # The main use-case for this sample application is CNN compression. Compression
        # requires a compression schedule configuration file in YAML.
        compression_scheduler = distiller.file_config(model, optimizer, args.compress)
        # Model is re-transferred to GPU in case parameters were added (e.g. PACTQuantizer)
        model.cuda()
    else:
        compression_scheduler = distiller.CompressionScheduler(model)

    args.kd_policy = None
    if args.kd_teacher:
        teacher = create_model(args.kd_pretrained, args.dataset, args.kd_teacher, device_ids=args.gpus)
        if args.kd_resume:
            teacher, _, _ = apputils.load_checkpoint(teacher, chkpt_file=args.kd_resume)
        dlw = distiller.DistillationLossWeights(args.kd_distill_wt, args.kd_student_wt, args.kd_teacher_wt)
        args.kd_policy = distiller.KnowledgeDistillationPolicy(model, teacher, args.kd_temp, dlw)
        compression_scheduler.add_policy(args.kd_policy, starting_epoch=args.kd_start_epoch, ending_epoch=args.epochs,
                                         frequency=1)

        msglogger.info('\nStudent-Teacher knowledge distillation enabled:')
        msglogger.info('\tTeacher Model: %s', args.kd_teacher)
        msglogger.info('\tTemperature: %s', args.kd_temp)
        msglogger.info('\tLoss Weights (distillation | student | teacher): %s',
                       ' | '.join(['{:.2f}'.format(val) for val in dlw]))
        msglogger.info('\tStarting from Epoch: %s', args.kd_start_epoch)

    for epoch in range(start_epoch, start_epoch + args.epochs):
        # This is the main training loop.
        msglogger.info('\n')
        if compression_scheduler:
            compression_scheduler.on_epoch_begin(epoch)

        # Train for one epoch
        with collectors_context(activations_collectors["train"]) as collectors:
            train(train_loader, model, criterion, optimizer, epoch, compression_scheduler,
                  loggers=[tflogger, pylogger], args=args)
            distiller.log_weights_sparsity(model, epoch, loggers=[tflogger, pylogger])
            distiller.log_activation_statsitics(epoch, "train", loggers=[tflogger],
                                                collector=collectors["sparsity"])
            if args.masks_sparsity:
                msglogger.info(distiller.masks_sparsity_tbl_summary(model, compression_scheduler))

        # evaluate on validation set
        with collectors_context(activations_collectors["valid"]) as collectors:
            top1, top5, vloss = validate(val_loader, model, criterion, [pylogger], args, epoch)
            distiller.log_activation_statsitics(epoch, "valid", loggers=[tflogger],
                                                collector=collectors["sparsity"])
            save_collectors_data(collectors, msglogger.logdir)

        stats = ('Peformance/Validation/',
                 OrderedDict([('Loss', vloss),
                              ('Top1', top1),
                              ('Top5', top5)]))
        distiller.log_training_progress(stats, None, epoch, steps_completed=0, total_steps=1, log_freq=1,
                                        loggers=[tflogger])

        if compression_scheduler:
            compression_scheduler.on_epoch_end(epoch, optimizer)

        # remember best top1 and save checkpoint
        #sparsity = distiller.model_sparsity(model)
        is_best = top1 > best_epochs[0].top1
        if is_best:
            best_epochs[0].epoch = epoch
            best_epochs[0].top1 = top1
            #best_epoch.sparsity = sparsity
            best_epochs = sorted(best_epochs, key=lambda score: score.top1)
        for score in reversed(best_epochs):
            if score.top1 > 0:
                msglogger.info('==> Best Top1: %.3f on Epoch: %d', score.top1, score.epoch)
        apputils.save_checkpoint(epoch, args.arch, model, optimizer, compression_scheduler,
                                 best_epochs[0].top1, is_best, args.name, msglogger.logdir)

    # Finally run results on the test set
    test(test_loader, model, criterion, [pylogger], activations_collectors, args=args)
示例#5
0
def main():
    global msglogger
    check_pytorch_version()
    args = parser.parse_args()
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    msglogger = apputils.config_pylogger(
        os.path.join(script_dir, 'logging.conf'), args.name, args.output_dir)

    # Log various details about the execution environment.  It is sometimes useful
    # to refer to past experiment executions and this information may be useful.
    apputils.log_execution_env_state(sys.argv, gitroot=module_path)
    msglogger.debug("Distiller: %s", distiller.__version__)

    start_epoch = 0
    best_top1 = 0

    if args.deterministic:
        # Experiment reproducibility is sometimes important.  Pete Warden expounded about this
        # in his blog: https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/
        # In Pytorch, support for deterministic execution is still a bit clunky.
        if args.workers > 1:
            msglogger.error(
                'ERROR: Setting --deterministic requires setting --workers/-j to 0 or 1'
            )
            exit(1)
        # Use a well-known seed, for repeatability of experiments
        torch.manual_seed(0)
        random.seed(0)
        np.random.seed(0)
        cudnn.deterministic = True
    else:
        # This issue: https://github.com/pytorch/pytorch/issues/3659
        # Implies that cudnn.benchmark should respect cudnn.deterministic, but empirically we see that
        # results are not re-produced when benchmark is set. So enabling only if deterministic mode disabled.
        cudnn.benchmark = True

    if args.gpus is not None:
        try:
            args.gpus = [int(s) for s in args.gpus.split(',')]
        except ValueError:
            msglogger.error(
                'ERROR: Argument --gpus must be a comma-separated list of integers only'
            )
            exit(1)
        available_gpus = torch.cuda.device_count()
        for dev_id in args.gpus:
            if dev_id >= available_gpus:
                msglogger.error(
                    'ERROR: GPU device ID {0} requested, but only {1} devices available'
                    .format(dev_id, available_gpus))
                exit(1)
        # Set default device in case the first one on the list != 0
        torch.cuda.set_device(args.gpus[0])

    # Infer the dataset from the model name
    args.dataset = 'cifar10' if 'cifar' in args.arch else 'imagenet'

    # Create the model
    png_summary = args.summary is not None and args.summary.startswith('png')
    is_parallel = not png_summary and args.summary != 'compute'  # For PNG summary, parallel graphs are illegible
    model = create_model(args.pretrained,
                         args.dataset,
                         args.arch,
                         parallel=is_parallel,
                         device_ids=args.gpus)

    compression_scheduler = None
    # Create a couple of logging backends.  TensorBoardLogger writes log files in a format
    # that can be read by Google's Tensor Board.  PythonLogger writes to the Python logger.
    tflogger = TensorBoardLogger(msglogger.logdir)
    pylogger = PythonLogger(msglogger)

    # We can optionally resume from a checkpoint
    if args.resume:
        model, compression_scheduler, start_epoch = apputils.load_checkpoint(
            model, chkpt_file=args.resume)

        if 'resnet' in args.arch and 'preact' not in args.arch and 'cifar' in args.arch:
            distiller.resnet_cifar_remove_layers(model)
            #model = distiller.resnet_cifar_remove_channels(model, compression_scheduler.zeros_mask_dict)

    # Define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)
    msglogger.info('Optimizer Type: %s', type(optimizer))
    msglogger.info('Optimizer Args: %s', optimizer.defaults)

    # This sample application can be invoked to produce various summary reports.
    if args.summary:
        which_summary = args.summary
        if which_summary.startswith('png'):
            apputils.draw_img_classifier_to_file(
                model, 'model.png', args.dataset,
                which_summary == 'png_w_params')
        else:
            distiller.model_summary(model, which_summary, args.dataset)
        exit()

    # Load the datasets: the dataset to load is inferred from the model name passed
    # in args.arch.  The default dataset is ImageNet, but if args.arch contains the
    # substring "_cifar", then cifar10 is used.
    train_loader, val_loader, test_loader, _ = apputils.load_data(
        args.dataset, os.path.expanduser(args.data), args.batch_size,
        args.workers, args.validation_size, args.deterministic)
    msglogger.info('Dataset sizes:\n\ttraining=%d\n\tvalidation=%d\n\ttest=%d',
                   len(train_loader.sampler), len(val_loader.sampler),
                   len(test_loader.sampler))

    activations_sparsity = None
    if args.activation_stats:
        # If your model has ReLU layers, then those layers have sparse activations.
        # ActivationSparsityCollector will collect information about this sparsity.
        # WARNING! Enabling activation sparsity collection will significantly slow down training!
        activations_sparsity = ActivationSparsityCollector(model)

    if args.sensitivity is not None:
        # This sample application can be invoked to execute Sensitivity Analysis on your
        # model.  The ouptut is saved to CSV and PNG.
        msglogger.info("Running sensitivity tests")
        test_fnc = partial(test,
                           test_loader=test_loader,
                           criterion=criterion,
                           loggers=[pylogger],
                           print_freq=args.print_freq)
        which_params = [
            param_name for param_name, _ in model.named_parameters()
        ]
        sensitivity = distiller.perform_sensitivity_analysis(
            model,
            net_params=which_params,
            sparsities=np.arange(0.0, 0.50, 0.05)
            if args.sensitivity == 'filter' else np.arange(0.0, 0.95, 0.05),
            test_func=test_fnc,
            group=args.sensitivity)
        distiller.sensitivities_to_png(sensitivity, 'sensitivity.png')
        distiller.sensitivities_to_csv(sensitivity, 'sensitivity.csv')
        exit()

    if args.evaluate:
        # This sample application can be invoked to evaluate the accuracy of your model on
        # the test dataset.
        # You can optionally quantize the model to 8-bit integer before evaluation.
        # For example:
        # python3 compress_classifier.py --arch resnet20_cifar  ../data.cifar10 -p=50 --resume=checkpoint.pth.tar --evaluate
        if args.quantize:
            model.cpu()
            quantizer = quantization.SymmetricLinearQuantizer(model, 8, 8)
            quantizer.prepare_model()
            model.cuda()
        top1, _, _ = test(test_loader, model, criterion, [pylogger],
                          args.print_freq)
        if args.quantize:
            checkpoint_name = 'quantized'
            apputils.save_checkpoint(0,
                                     args.arch,
                                     model,
                                     optimizer=None,
                                     best_top1=top1,
                                     name='_'.split(args.name, checkpoint_name)
                                     if args.name else checkpoint_name,
                                     dir=msglogger.logdir)
        exit()

    if args.compress:
        # The main use-case for this sample application is CNN compression. Compression
        # requires a compression schedule configuration file in YAML.
        compression_scheduler = distiller.file_config(model, optimizer,
                                                      args.compress)

    for epoch in range(start_epoch, start_epoch + args.epochs):
        # This is the main training loop.
        msglogger.info('\n')
        if compression_scheduler:
            compression_scheduler.on_epoch_begin(epoch)

        # Train for one epoch
        train(train_loader,
              model,
              criterion,
              optimizer,
              epoch,
              compression_scheduler,
              loggers=[tflogger, pylogger],
              print_freq=args.print_freq,
              log_params_hist=args.log_params_histograms)
        distiller.log_weights_sparsity(model,
                                       epoch,
                                       loggers=[tflogger, pylogger])
        if args.activation_stats:
            distiller.log_activation_sparsity(epoch,
                                              loggers=[tflogger, pylogger],
                                              collector=activations_sparsity)

        # evaluate on validation set
        top1, top5, vloss = validate(val_loader, model, criterion, [pylogger],
                                     args.print_freq, epoch)
        stats = ('Peformance/Validation/',
                 OrderedDict([('Loss', vloss), ('Top1', top1),
                              ('Top5', top5)]))
        distiller.log_training_progress(stats,
                                        None,
                                        epoch,
                                        steps_completed=0,
                                        total_steps=1,
                                        log_freq=1,
                                        loggers=[tflogger])

        if compression_scheduler:
            compression_scheduler.on_epoch_end(epoch)

        # remember best top1 and save checkpoint
        is_best = top1 > best_top1
        best_top1 = max(top1, best_top1)
        apputils.save_checkpoint(epoch, args.arch, model, optimizer,
                                 compression_scheduler, best_top1, is_best,
                                 args.name, msglogger.logdir)

    # Finally run results on the test set
    test(test_loader, model, criterion, [pylogger], args.print_freq)
示例#6
0
def objective(space):
    global model
    global count
    global global_min_score
    
    #Explore new model
    model = create_model(False, args.dataset, args.arch, device_ids=args.gpus)
    count += 1
    # Objective function: F(Acc, Lat) = (1 - Acc.) + (alpha * Sparsity)
    accuracy = 0
    alpha = 0.3 # Super-parameter: the importance of inference time
    latency = 0.0
    sparsity = 0.0
    # Training hyperparameter

    if args.resume:
        model, compression_scheduler, start_epoch = apputils.load_checkpoint(
            model, chkpt_file=args.resume)
        print('resume mode: {}'.format(args.resume))

    print(global_min_score)
    criterion = nn.CrossEntropyLoss().cuda()
    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)
    """
    distiller/distiller/config.py
        # Element-wise sparsity
        sparsity_levels = {net_param: sparsity_level}
        pruner = distiller.pruning.SparsityLevelParameterPruner(name='sensitivity', levels=sparsity_levels)
        policy = distiller.PruningPolicy(pruner, pruner_args=None)
        scheduler = distiller.CompressionScheduler(model)
        scheduler.add_policy(policy, epochs=[0, 2, 4])
        # Local search 
        add multiple pruner for each layer
    """
    sparsity_levels = {}
    for key, value in space.items():
        sparsity_levels[key] = value
    #print(sparsity_levels)

    pruner = distiller.pruning.SparsityLevelParameterPruner(name='sensitivity', levels=sparsity_levels) # for SparsityLevelParameterPruner
    # pruner = distiller.pruning.SensitivityPruner(name='sensitivity', sensitivities=sparsity_levels) # for SensitivityPruner
    policy = distiller.PruningPolicy(pruner, pruner_args=None)
    lrpolicy = distiller.LRPolicy(torch.optim.lr_scheduler.StepLR(optimizer, step_size=6, gamma=0.1))
    compression_scheduler = distiller.CompressionScheduler(model)
    compression_scheduler.add_policy(policy, epochs=[PrunerEpoch])
    # compression_scheduler.add_policy(policy, starting_epoch=0, ending_epoch=38, frequency=2)
    compression_scheduler.add_policy(lrpolicy, starting_epoch=0, ending_epoch=50, frequency=1)
    """
    distiller/example/classifier_compression/compress_classifier.py
    For each epoch:
        compression_scheduler.on_epoch_begin(epoch)
        train()
        save_checkpoint()
        compression_scheduler.on_epoch_end(epoch)

    train():
        For each training step:
            compression_scheduler.on_minibatch_begin(epoch)
            output = model(input)
            loss = criterion(output, target)
            compression_scheduler.before_backward_pass(epoch)
            loss.backward()
            optimizer.step()
            compression_scheduler.on_minibatch_end(epoch)
    """
    
    local_min_score = 2.
    for i in range(args.epochs):
        compression_scheduler.on_epoch_begin(i)
        train_accuracy = train(i,criterion, optimizer, compression_scheduler)
        val_accuracy = validate() # Validate hyperparameter setting
        t, sparsity = distiller.weights_sparsity_tbl_summary(model, return_total_sparsity=True)
        compression_scheduler.on_epoch_end(i, optimizer)
        apputils.save_checkpoint(i, args.arch, model, optimizer, compression_scheduler, train_accuracy, False,
                                         'hyperopt', './')
        print('Epoch: {}, train_acc: {:.4f}, val_acc: {:.4f}, sparsity: {:.4f}'.format(i, train_accuracy, val_accuracy, sparsity))
        
        score = (1-(val_accuracy/100.)) + (alpha * (1-sparsity/100.)) # objective funtion here
        if(score < global_min_score):
            global_min_score = score
            apputils.save_checkpoint(i, args.arch, model, optimizer, compression_scheduler, train_accuracy, True, 'best', './')

        if(score < local_min_score):
            local_min_score = score

        if (PrunerConstraint == True and i >= PrunerEpoch and (sparsity < Expected_Sparsity_Level_Low or sparsity > Expected_Sparsity_Level_High)):
            break 

    test_accuracy = test() # Validate hyperparameter setting

    print('{} trials: score: {:.4f}, train_acc:{:.4f}, val_acc:{:.4f}, test_acc:{:.4f}, sparsity:{:.4f}'.format(count, 
                                      local_min_score, 
                                      train_accuracy, 
                                      val_accuracy, 
                                      test_accuracy,
                                      sparsity))

    return local_min_score
示例#7
0
def arbitrary_channel_pruning(config, channels_to_remove, is_parallel):
    """Test removal of arbitrary channels.

    The test receives a specification of channels to remove.
    Based on this specification, the channels are pruned and then physically
    removed from the model (via a "thinning" process).
    """
    model, zeros_mask_dict = common.setup_test(config.arch, config.dataset,
                                               is_parallel)

    assert len(config.module_pairs
               ) == 1  # This is a temporary restriction on the test
    pair = config.module_pairs[0]
    conv2 = common.find_module_by_name(model, pair[1])
    assert conv2 is not None

    # Test that we can access the weights tensor of the first convolution in layer 1
    conv2_p = distiller.model_find_param(model, pair[1] + ".weight")
    assert conv2_p is not None

    assert conv2_p.dim() == 4
    num_channels = conv2_p.size(1)
    cnt_nnz_channels = num_channels - len(channels_to_remove)
    mask = create_channels_mask(conv2_p, channels_to_remove)
    assert distiller.density_ch(mask) == (
        conv2.in_channels - len(channels_to_remove)) / conv2.in_channels
    # Cool, so now we have a mask for pruning our channels.

    # Use the mask to prune
    zeros_mask_dict[pair[1] + ".weight"].mask = mask
    zeros_mask_dict[pair[1] + ".weight"].apply_mask(conv2_p)
    all_channels = set([ch for ch in range(num_channels)])
    nnz_channels = set(
        distiller.find_nonzero_channels_list(conv2_p, pair[1] + ".weight"))
    channels_removed = all_channels - nnz_channels
    logger.info("Channels removed {}".format(channels_removed))

    # Now, let's do the actual network thinning
    distiller.remove_channels(model,
                              zeros_mask_dict,
                              config.arch,
                              config.dataset,
                              optimizer=None)
    conv1 = common.find_module_by_name(model, pair[0])

    assert conv1.out_channels == cnt_nnz_channels
    assert conv2.in_channels == cnt_nnz_channels
    assert conv1.weight.size(0) == cnt_nnz_channels
    assert conv2.weight.size(1) == cnt_nnz_channels
    if config.bn_name is not None:
        bn1 = common.find_module_by_name(model, config.bn_name)
        assert bn1.running_var.size(0) == cnt_nnz_channels
        assert bn1.running_mean.size(0) == cnt_nnz_channels
        assert bn1.num_features == cnt_nnz_channels
        assert bn1.bias.size(0) == cnt_nnz_channels
        assert bn1.weight.size(0) == cnt_nnz_channels

    dummy_input = torch.randn(1, 3, 32, 32).cuda()
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=0.01,
                                momentum=0.9,
                                weight_decay=0.1)
    run_forward_backward(model, optimizer, dummy_input)

    # Let's test saving and loading a thinned model.
    # We save 3 times, and load twice, to make sure to cover some corner cases:
    #   - Make sure that after loading, the model still has hold of the thinning recipes
    #   - Make sure that after a 2nd load, there no problem loading (in this case, the
    #   - tensors are already thin, so this is a new flow)
    # (1)
    save_checkpoint(epoch=0, arch=config.arch, model=model, optimizer=None)
    model_2 = create_model(False,
                           config.dataset,
                           config.arch,
                           parallel=is_parallel)
    model(dummy_input)
    model_2(dummy_input)
    conv2 = common.find_module_by_name(model_2, pair[1])
    assert conv2 is not None
    with pytest.raises(KeyError):
        model_2, compression_scheduler, start_epoch = load_checkpoint(
            model_2, 'checkpoint.pth.tar')
    compression_scheduler = distiller.CompressionScheduler(model)
    hasattr(model, 'thinning_recipes')

    run_forward_backward(model, optimizer, dummy_input)

    # (2)
    save_checkpoint(epoch=0,
                    arch=config.arch,
                    model=model,
                    optimizer=None,
                    scheduler=compression_scheduler)
    model_2, compression_scheduler, start_epoch = load_checkpoint(
        model_2, 'checkpoint.pth.tar')
    assert hasattr(model_2, 'thinning_recipes')
    logger.info("test_arbitrary_channel_pruning - Done")

    # (3)
    save_checkpoint(epoch=0,
                    arch=config.arch,
                    model=model_2,
                    optimizer=None,
                    scheduler=compression_scheduler)
    model_2, compression_scheduler, start_epoch = load_checkpoint(
        model_2, 'checkpoint.pth.tar')
    assert hasattr(model_2, 'thinning_recipes')
    logger.info("test_arbitrary_channel_pruning - Done 2")
示例#8
0
def main():
    global msglogger
    check_pytorch_version()
    args = parser.parse_args()
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    msglogger = apputils.config_pylogger(
        os.path.join(script_dir, 'logging.conf'), args.name, args.output_dir)

    # Log various details about the execution environment.  It is sometimes useful
    # to refer to past experiment executions and this information may be useful.
    apputils.log_execution_env_state(sys.argv, gitroot=module_path)
    msglogger.debug("Distiller: %s", distiller.__version__)

    start_epoch = 0
    best_top1 = 0

    if args.deterministic:
        # Experiment reproducibility is sometimes important.  Pete Warden expounded about this
        # in his blog: https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/
        # In Pytorch, support for deterministic execution is still a bit clunky.
        if args.workers > 1:
            msglogger.error(
                'ERROR: Setting --deterministic requires setting --workers/-j to 0 or 1'
            )
            exit(1)
        # Use a well-known seed, for repeatability of experiments
        torch.manual_seed(0)
        random.seed(0)
        np.random.seed(0)
        cudnn.deterministic = True
    else:
        # This issue: https://github.com/pytorch/pytorch/issues/3659
        # Implies that cudnn.benchmark should respect cudnn.deterministic, but empirically we see that
        # results are not re-produced when benchmark is set. So enabling only if deterministic mode disabled.
        cudnn.benchmark = True

    if args.gpus is not None:
        try:
            args.gpus = [int(s) for s in args.gpus.split(',')]
        except ValueError:
            msglogger.error(
                'ERROR: Argument --gpus must be a comma-separated list of integers only'
            )
            exit(1)
        available_gpus = torch.cuda.device_count()
        for dev_id in args.gpus:
            if dev_id >= available_gpus:
                msglogger.error(
                    'ERROR: GPU device ID {0} requested, but only {1} devices available'
                    .format(dev_id, available_gpus))
                exit(1)
        # Set default device in case the first one on the list != 0
        torch.cuda.set_device(args.gpus[0])

    # Infer the dataset from the model name
    # args.dataset = 'cifar10' if 'cifar' in args.arch else 'imagenet'
    # args.num_classes = 10 if args.dataset == 'cifar10' else 1000

    if args.earlyexit_thresholds:
        args.num_exits = len(args.earlyexit_thresholds) + 1
        args.loss_exits = [0] * args.num_exits
        args.losses_exits = []
        args.exiterrors = []

    args.dataset = 'mmr'
    # Create the model
    # model = torch_models.__dict__[args.arch](pretrained=args.pretrained)
    from importlib import import_module
    # alexnet = import_module(args.arch)
    # model = alexnet.alexnet(pretrained=args.pretrained)
    # for name, parameters in model.named_parameters():
    #     if 'weight' in name:
    #         print(name)
    peleenet = import_module(args.arch)
    model = peleenet.PeleeNet(num_classes=args.num_classes)
    model = torch.nn.DataParallel(model, device_ids=args.gpus)
    model.cuda()

    compression_scheduler = None
    # Create a couple of logging backends.  TensorBoardLogger writes log files in a format
    # that can be read by Google's Tensor Board.  PythonLogger writes to the Python logger.
    tflogger = TensorBoardLogger(msglogger.logdir)
    pylogger = PythonLogger(msglogger)

    # capture thresholds for early-exit training
    if args.earlyexit_thresholds:
        msglogger.info('=> using early-exit threshold values of %s',
                       args.earlyexit_thresholds)

    # We can optionally resume from a checkpoint
    if args.resume:
        model, compression_scheduler, start_epoch = apputils.load_checkpoint(
            model, chkpt_file=args.resume)

    # Define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)
    msglogger.info('Optimizer Type: %s', type(optimizer))
    msglogger.info('Optimizer Args: %s', optimizer.defaults)

    if args.ADC:
        return automated_deep_compression(model, criterion, pylogger, args)

    # This sample application can be invoked to produce various summary reports.
    if args.summary:
        return summarize_model(model, args.dataset, which_summary=args.summary)

    # Load the datasets: the dataset to load is inferred from the model name passed
    # in args.arch.  The default dataset is ImageNet, but if args.arch contains the
    # substring "_cifar", then cifar10 is used.
    train_loader, val_loader, test_loader, _ = apputils.load_data(
        args.dataset, os.path.expanduser(args.data), args.batch_size,
        args.workers, args.validation_size, args.deterministic)
    msglogger.info('Dataset sizes:\n\ttraining=%d\n\tvalidation=%d\n\ttest=%d',
                   len(train_loader.sampler), len(val_loader.sampler),
                   len(test_loader.sampler))

    activations_sparsity = None
    if args.activation_stats:
        # If your model has ReLU layers, then those layers have sparse activations.
        # ActivationSparsityCollector will collect information about this sparsity.
        # WARNING! Enabling activation sparsity collection will significantly slow down training!
        activations_sparsity = ActivationSparsityCollector(model)

    if args.sensitivity is not None:
        return sensitivity_analysis(model, criterion, test_loader, pylogger,
                                    args)

    if args.evaluate:
        return evaluate_model(model, criterion, test_loader, pylogger, args)

    if args.compress:
        # The main use-case for this sample application is CNN compression. Compression
        # requires a compression schedule configuration file in YAML.
        compression_scheduler = distiller.file_config(model, optimizer,
                                                      args.compress)
        # Model is re-transferred to GPU in case parameters were added (e.g. PACTQuantizer)
        model.cuda()

    for epoch in range(start_epoch, start_epoch + args.epochs):
        # This is the main training loop.
        msglogger.info('\n')
        if compression_scheduler:
            compression_scheduler.on_epoch_begin(epoch)

        # Train for one epoch
        train(train_loader,
              model,
              criterion,
              optimizer,
              epoch,
              compression_scheduler,
              loggers=[tflogger, pylogger],
              args=args)
        distiller.log_weights_sparsity(model,
                                       epoch,
                                       loggers=[tflogger, pylogger])
        if args.activation_stats:
            distiller.log_activation_sparsity(epoch,
                                              loggers=[tflogger, pylogger],
                                              collector=activations_sparsity)

        # evaluate on validation set
        top1, top5, vloss = validate(val_loader, model, criterion, [pylogger],
                                     args, epoch)
        stats = ('Peformance/Validation/',
                 OrderedDict([('Loss', vloss), ('Top1', top1),
                              ('Top5', top5)]))
        distiller.log_training_progress(stats,
                                        None,
                                        epoch,
                                        steps_completed=0,
                                        total_steps=1,
                                        log_freq=1,
                                        loggers=[tflogger])

        if compression_scheduler:
            compression_scheduler.on_epoch_end(epoch, optimizer)

        # remember best top1 and save checkpoint
        is_best = top1 > best_top1
        if is_best:
            best_epoch = epoch
            best_top1 = top1
        msglogger.info('==> Best validation Top1: %.3f   Epoch: %d', best_top1,
                       best_epoch)
        apputils.save_checkpoint(epoch, args.arch, model, optimizer,
                                 compression_scheduler, best_top1, is_best,
                                 args.name, msglogger.logdir)

    # Finally run results on the test set
    test(test_loader, model, criterion, [pylogger], args=args)
def greedy_pruner(pruned_model, app_args, fraction_to_prune, pruning_step,
                  test_fn, train_fn):
    dataset = app_args.dataset
    arch = app_args.arch
    create_network_record_file()

    # Temporary ugly hack!
    resnet_layers = None
    resnet_params = None
    if arch == "resnet20_cifar":
        resnet_params = resnet20_params
    elif arch == "resnet56_cifar":
        resnet_params = resnet56_params
    elif arch == "resnet50":
        resnet_params = resnet50_params
    if resnet_params is not None:
        resnet_layers = [param[:-len(".weight")] for param in resnet_params]

    total_macs = dense_total_macs = get_model_compute_budget(
        pruned_model, dataset, resnet_layers)
    iteration = 0
    model = pruned_model

    while total_macs > fraction_to_prune * dense_total_macs:
        iteration += 1
        if app_args.greedy_finetuning_policy == "constant":
            effective_train_size = app_args.effective_train_size
        elif app_args.greedy_finetuning_policy == "linear-grow":
            effective_train_size = 1 - (total_macs / dense_total_macs)

        prec1, prec5, param_name, pruned_model, zeros_mask_dict = find_most_robust_layer(
            iteration, pruned_model, pruning_step, test_fn, train_fn, app_args,
            resnet_params, effective_train_size)
        total_macs = get_model_compute_budget(pruned_model, dataset,
                                              resnet_layers)
        densities = get_param_densities(model, pruned_model, resnet_params)
        compute_density = total_macs / dense_total_macs
        results = (iteration, prec1, param_name, compute_density, total_macs,
                   densities)
        record_network_details(results)
        scheduler = create_scheduler(pruned_model, zeros_mask_dict)
        save_checkpoint(0,
                        arch,
                        pruned_model,
                        optimizer=None,
                        best_top1=prec1,
                        scheduler=scheduler,
                        name="greedy__{}__{:.1f}__{:.1f}".format(
                            str(iteration).zfill(3), compute_density * 100,
                            prec1),
                        dir=msglogger.logdir)
        del scheduler
        del zeros_mask_dict
        msglogger.info("Iteration {}: top1-{:.2f} {} compute-{:.2f}".format(
            *results[0:4]))

    assert iteration > 0
    prec1, prec5, loss = test_fn(model=pruned_model)
    print(prec1, prec5, loss)
    scheduler = create_scheduler(pruned_model, zeros_mask_dict)
    save_checkpoint(0,
                    arch,
                    pruned_model,
                    optimizer=None,
                    best_top1=prec1,
                    scheduler=scheduler,
                    name='_'.join(("greedy", str(fraction_to_prune))),
                    dir=msglogger.logdir)
def objective(space):
    global model
    global count
    global best_dict
    
    #Explore new model
    model = create_model(False, args.dataset, args.arch, device_ids=args.gpus)
    if args.resume:
        model, _, _ = apputils.load_checkpoint(
            model, chkpt_file=args.resume)
    
    count += 1
    print('{} trial starting...'.format(count))
    # Objective function: F(Acc, Lat) = (1 - Acc.) + (alpha * Sparsity)
    accuracy = 0
    #alpha = 0.2 # Super-parameter: the importance of inference time
    alpha = 1.0 # Super-parameter: the importance of inference time
    sparsity = 0.0
    # Training hyperparameter
    criterion = nn.CrossEntropyLoss().cuda()
    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)
    """
    distiller/distiller/config.py
        # Element-wise sparsity
        sparsity_levels = {net_param: sparsity_level}
        pruner = distiller.pruning.SparsityLevelParameterPruner(name='sensitivity', levels=sparsity_levels)
        policy = distiller.PruningPolicy(pruner, pruner_args=None)
        scheduler = distiller.CompressionScheduler(model)
        scheduler.add_policy(policy, epochs=[0, 2, 4])
        # Local search 
        add multiple pruner for each layer
    """
    sparsity_levels = {}
    for key, value in space.items():
        sparsity_levels[key] = value
    pruner = distiller.pruning.SparsityLevelParameterPruner(name='sensitivity', levels=sparsity_levels)
    policy = distiller.PruningPolicy(pruner, pruner_args=None)
    lrpolicy = distiller.LRPolicy(torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1))
    compression_scheduler = distiller.CompressionScheduler(model)
    #compression_scheduler.add_policy(policy, epochs=[90])
    compression_scheduler.add_policy(policy, epochs=[0])
    compression_scheduler.add_policy(lrpolicy, starting_epoch=0, ending_epoch=90, frequency=1)
    """
    distiller/example/classifier_compression/compress_classifier.py
    For each epoch:
        compression_scheduler.on_epoch_begin(epoch)
        train()
        save_checkpoint()
        compression_scheduler.on_epoch_end(epoch)

    train():
        For each training step:
            compression_scheduler.on_minibatch_begin(epoch)
            output = model(input)
            loss = criterion(output, target)
            compression_scheduler.before_backward_pass(epoch)
            loss.backward()
            optimizer.step()
            compression_scheduler.on_minibatch_end(epoch)
    """
    for i in range(args.epochs):
        compression_scheduler.on_epoch_begin(i)
        train_accuracy = train(i,criterion, optimizer, compression_scheduler)
        val_accuracy = validate() # Validate hyperparameter setting
        t, sparsity = distiller.weights_sparsity_tbl_summary(model, return_total_sparsity=True)
        compression_scheduler.on_epoch_end(i, optimizer)
        apputils.save_checkpoint(i, args.arch, model, optimizer, compression_scheduler, train_accuracy, False,
                                         'hyperopt', './')
        print('{} epochs => train acc:{:.2f}%,  val acc:{:.2f}%'.format(i, train_accuracy, val_accuracy))
        
    test_accuracy = validate(test_loader) # Validate hyperparameter setting
    #score = (1-(val_accuracy/100.)) + (alpha * (1-sparsity/100.)) # objective funtion here
    
    # objective funtion here
    # accuracy: 98~90%, sparsity: 80%~50%
    score = -((val_accuracy/100.)**2-0.9**2 + alpha * ((sparsity/100.)**2-0.5**2)) 
    print('{} trials: score: {:.2f}\ttrain acc:{:.2f}%\tval acc:{:.2f}%\ttest acc:{:.2f}%\tsparsity:{:.2f}%'.format(count, 
                                      score, 
                                      train_accuracy, 
                                      val_accuracy, 
                                      test_accuracy,
                                      sparsity))
    if score < best_dict['score']:
        best_dict['trial'] = count
        best_dict['score'] = score
        best_dict['tr_acc'] = train_accuracy        
        best_dict['v_acc'] = val_accuracy
        best_dict['te_acc'] = test_accuracy
        best_dict['sparsity'] = sparsity
        best_dict['model_best'] = copy.deepcopy(model)

    return score
示例#11
0
def arbitrary_channel_pruning(config, channels_to_remove):
    """Test removal of arbitrary channels.

    The test receives a specification of channels to remove.
    Based on this specification, the channels are pruned and then physically
    removed from the model (via a "thinning" process).
    """
    model, zeros_mask_dict = common.setup_test(config.arch, config.dataset)

    conv2 = common.find_module_by_name(model, config.conv2_name)
    assert conv2 is not None

    # Test that we can access the weights tensor of the first convolution in layer 1
    conv2_p = distiller.model_find_param(model, config.conv2_name + ".weight")
    assert conv2_p is not None

    assert conv2_p.dim() == 4
    num_filters = conv2_p.size(0)
    num_channels = conv2_p.size(1)
    kernel_height = conv2_p.size(2)
    kernel_width = conv2_p.size(3)
    cnt_nnz_channels = num_channels - len(channels_to_remove)

    # Let's build our 4D mask.
    # We start with a 1D mask of channels, with all but our specified channels set to one
    channels = torch.ones(num_channels)
    for ch in channels_to_remove:
        channels[ch] = 0

    # Now let's expand back up to a 4D mask
    mask = channels.expand(num_filters, num_channels)
    mask.unsqueeze_(-1)
    mask.unsqueeze_(-1)
    mask = mask.expand(num_filters, num_channels, kernel_height, kernel_width).contiguous()

    assert mask.shape == conv2_p.shape
    assert distiller.density_ch(mask) == (conv2.in_channels - len(channels_to_remove)) / conv2.in_channels

    # Cool, so now we have a mask for pruning our channels.
    # Use the mask to prune
    zeros_mask_dict[config.conv2_name + ".weight"].mask = mask
    zeros_mask_dict[config.conv2_name + ".weight"].apply_mask(conv2_p)
    all_channels = set([ch for ch in range(num_channels)])
    nnz_channels = set(distiller.find_nonzero_channels_list(conv2_p, config.conv2_name + ".weight"))
    channels_removed = all_channels - nnz_channels
    logger.info("Channels removed {}".format(channels_removed))

    # Now, let's do the actual network thinning
    distiller.remove_channels(model, zeros_mask_dict, config.arch, config.dataset)
    conv1 = common.find_module_by_name(model, config.conv1_name)
    logger.info(conv1)
    logger.info(conv2)
    assert conv1.out_channels == cnt_nnz_channels
    assert conv2.in_channels == cnt_nnz_channels
    assert conv1.weight.size(0) == cnt_nnz_channels
    assert conv2.weight.size(1) == cnt_nnz_channels
    if config.bn_name is not None:
        bn1 = common.find_module_by_name(model, config.bn_name)
        assert bn1.running_var.size(0) == cnt_nnz_channels
        assert bn1.running_mean.size(0) == cnt_nnz_channels
        assert bn1.num_features == cnt_nnz_channels
        assert bn1.bias.size(0) == cnt_nnz_channels
        assert bn1.weight.size(0) == cnt_nnz_channels

    # Let's test saving and loading a thinned model.
    # We save 3 times, and load twice, to make sure to cover some corner cases:
    #   - Make sure that after loading, the model still has hold of the thinning recipes
    #   - Make sure that after a 2nd load, there no problem loading (in this case, the
    #   - tensors are already thin, so this is a new flow)
    # (1)
    save_checkpoint(epoch=0, arch=config.arch, model=model, optimizer=None)
    model_2 = create_model(False, config.dataset, config.arch, parallel=False)
    dummy_input = torch.randn(1, 3, 32, 32)
    model(dummy_input)
    model_2(dummy_input)
    conv2 = common.find_module_by_name(model_2, config.conv2_name)
    assert conv2 is not None
    with pytest.raises(KeyError):
        model_2, compression_scheduler, start_epoch = load_checkpoint(model_2, 'checkpoint.pth.tar')
    compression_scheduler = distiller.CompressionScheduler(model)
    hasattr(model, 'thinning_recipes')

    # (2)
    save_checkpoint(epoch=0, arch=config.arch, model=model, optimizer=None, scheduler=compression_scheduler)
    model_2, compression_scheduler, start_epoch = load_checkpoint(model_2, 'checkpoint.pth.tar')
    assert hasattr(model_2, 'thinning_recipes')
    logger.info("test_arbitrary_channel_pruning - Done")

    # (3)
    save_checkpoint(epoch=0, arch=config.arch, model=model_2, optimizer=None, scheduler=compression_scheduler)
    model_2, compression_scheduler, start_epoch = load_checkpoint(model_2, 'checkpoint.pth.tar')
    assert hasattr(model_2, 'thinning_recipes')
    logger.info("test_arbitrary_channel_pruning - Done 2")
示例#12
0
def test_arbitrary_channel_pruning():
    ARCH = "resnet20_cifar"
    DATASET = "cifar10"

    model, zeros_mask_dict = setup_test(ARCH, DATASET)

    conv2 = find_module_by_name(model, "layer1.0.conv2")
    assert conv2 is not None

    # Test that we can access the weights tensor of the first convolution in layer 1
    conv2_p = distiller.model_find_param(model, "layer1.0.conv2.weight")
    assert conv2_p is not None

    assert conv2_p.dim() == 4
    num_filters = conv2_p.size(0)
    num_channels = conv2_p.size(1)
    kernel_height = conv2_p.size(2)
    kernel_width = conv2_p.size(3)

    channels_to_remove = [0, 2]

    # Let's build our 4D mask.
    # We start with a 1D mask of channels, with all but our specified channels set to one
    channels = torch.ones(num_channels)
    for ch in channels_to_remove:
        channels[ch] = 0

    # Now let's expand back up to a 4D mask
    mask = channels.expand(num_filters, num_channels)
    mask.unsqueeze_(-1)
    mask.unsqueeze_(-1)
    mask = mask.expand(num_filters, num_channels, kernel_height,
                       kernel_width).contiguous()

    assert mask.shape == conv2_p.shape
    assert distiller.density_ch(mask) == (
        conv2.in_channels - len(channels_to_remove)) / conv2.in_channels

    # Cool, so now we have a mask for pruning our channels.
    # Use the mask to prune
    zeros_mask_dict["layer1.0.conv2.weight"].mask = mask
    zeros_mask_dict["layer1.0.conv2.weight"].apply_mask(conv2_p)
    all_channels = set([ch for ch in range(num_channels)])
    channels_removed = all_channels - set(
        distiller.find_nonzero_channels(conv2_p, "layer1.0.conv2.weight"))
    logger.info(channels_removed)

    # Now, let's do the actual network thinning
    distiller.remove_channels(model, zeros_mask_dict, ARCH, DATASET)
    conv1 = find_module_by_name(model, "layer1.0.conv1")
    logger.info(conv1)
    logger.info(conv2)
    assert conv1.out_channels == 14
    assert conv2.in_channels == 14
    assert conv1.weight.size(0) == 14
    assert conv2.weight.size(1) == 14
    bn1 = find_module_by_name(model, "layer1.0.bn1")
    assert bn1.running_var.size(0) == 14
    assert bn1.running_mean.size(0) == 14
    assert bn1.num_features == 14
    assert bn1.bias.size(0) == 14
    assert bn1.weight.size(0) == 14

    # Let's test saving and loading a thinned model.
    # We save 3 times, and load twice, to make sure to cover some corner cases:
    #   - Make sure that after loading, the model still has hold of the thinning recipes
    #   - Make sure that after a 2nd load, there no problem loading (in this case, the
    #   - tensors are already thin, so this is a new flow)
    save_checkpoint(epoch=0, arch=ARCH, model=model, optimizer=None)
    model_2 = create_model(False, DATASET, ARCH, parallel=False)
    dummy_input = torch.randn(1, 3, 32, 32)
    model(dummy_input)
    model_2(dummy_input)
    conv2 = find_module_by_name(model_2, "layer1.0.conv2")
    assert conv2 is not None
    with pytest.raises(KeyError):
        model_2, compression_scheduler, start_epoch = load_checkpoint(
            model_2, 'checkpoint.pth.tar')

    compression_scheduler = distiller.CompressionScheduler(model)
    hasattr(model, 'thinning_recipes')
    save_checkpoint(epoch=0,
                    arch=ARCH,
                    model=model,
                    optimizer=None,
                    scheduler=compression_scheduler)
    model_2, compression_scheduler, start_epoch = load_checkpoint(
        model_2, 'checkpoint.pth.tar')
    assert hasattr(model_2, 'thinning_recipes')
    logger.info("test_arbitrary_channel_pruning - Done")

    save_checkpoint(epoch=0,
                    arch=ARCH,
                    model=model_2,
                    optimizer=None,
                    scheduler=compression_scheduler)
    model_2, compression_scheduler, start_epoch = load_checkpoint(
        model_2, 'checkpoint.pth.tar')
    logger.info("test_arbitrary_channel_pruning - Done 2")