#print('3',three) #total pixel count total = len(pix_val) #Percentage of each value a = (five * 100 / total) b = (seven * 100 / total) c = (four * 100 / total) d = (three * 100 / total) if (a + c == 100 or a + c == 99): print("Good") if ((a > c > d > b or a > d > c > b)): sd_file = os.path.join(sd_dir2, os.path.basename(in_file)) raster.WriteRaster(reading, sd_file) print(sd_file) elif (c > a > d > b or c > d > a > b): sd_file = os.path.join(sd_dir2, os.path.basename(in_file)) raster.WriteRaster(reading, sd_file) print(sd_file) elif (d > a > c > b or d > c > a > b): sd_file = os.path.join(sd_dir2, os.path.basename(in_file)) raster.WriteRaster(reading, sd_file) print(sd_file) elif (c > b > a): sd_file = os.path.join(sd_dir2, os.path.basename(in_file)) raster.WriteRaster(reading, sd_file) print(sd_file) elif (a > b > c):
in_files.sort() sd_dir = "/home/pavithra/Desktop/Rasterimages/NEW_SD/SD_B12" for in_file in in_files: r_band = raster.ReadRaster(in_file) data = r_band.data out_sd = ndimage.generic_filter(data, np.var, size=3)**0.5 sd_file = os.path.join(sd_dir, os.path.basename(in_file)) r_band_sd = raster.Raster(out_sd, extent=r_band.extent, projection=r_band.projection) raster.WriteRaster(r_band_sd, sd_file) print(sd_file) #Applying Guassian filter in_dirtwo = "/home/pavithra/Desktop/Rasterimages/NEW_SD/SD_B12/*.tif" in_filestwo = glob.glob(in_dirtwo) in_filestwo.sort() sd_dirtwo = "/home/pavithra/Desktop/Rasterimages/NEW_Sharpened_data/B12" for in_file in in_filestwo: r_bandtwo = raster.ReadRaster(in_file) datatwo = r_bandtwo.data blurred_f = ndimage.gaussian_filter(datatwo, 2)
im = raster.ReadRaster( '/home/pavithra/Desktop/Rasterimages/NEW_Feature_data/B02/T14QQF_20181220T165719_B02_10m.tif' ) sd_dir = "/home/pavithra/Desktop/Satyukt" data = im.data print(data[1][2]) print(data.shape) #955 is the number of pixels in row and 1190 in the column for i in range(0, 955): for j in range(0, 1190): if (data[i][j] <= 65): data[i][j] = 255 else: data[i][j] = 0 print(data) sd_file = os.path.join(sd_dir, os.path.basename('20th Dec 2018_B2.tif')) r_band_sd = raster.Raster(data, extent=im.extent, projection=im.projection) raster.WriteRaster(r_band_sd, sd_file) print(sd_file)
for ik_file in sd_files: one = os.path.basename(in_file) on = one.rsplit('_',2) two = os.path.basename(ik_file) tw = two.rsplit('_',2) if(on[0] == tw[0]): r_band = raster.ReadRaster(ik_file) data = r_band.data #data1 = r_band.astype(np.uint8) for i in range(len(data)): for j in range(len(data[0])): if(data[i,j]>3000): data[i,j] = np.nan else: data[i,j] = data[i,j] sd_file = os.path.join(sd_datacc, os.path.basename(ik_file)) r_band_cc = raster.Raster(data, extent=r_band.extent, projection=r_band.projection) raster.WriteRaster(r_band_cc, sd_file) print(sd_file) else: print('file not matched')