def rmse(y, y_hat): diff = np.power(y - y_hat, 2) return np.sqrt(np.sum(diff)) # load test data boston = load_boston() n = 10000 # create data matrix data = arboretum.DMatrix(boston.data[0:n], y=boston.target[0:n]) y = boston.target[0:n] # init model model = arboretum.Garden('reg:linear', data, 6, 2, 1, 0.5) # grow trees for i in xrange(5): model.grow_tree() # predict on train data set pred = model.predict(data) # print first n records print pred[0:10] #RMSE print rmse(pred, y)
'gpu': True }, 'tree': { 'eta': 0.2, 'max_depth': 6, 'gamma': 0.0, 'min_child_weight': 2.0, 'min_leaf_size': 0, 'colsample_bytree': 1.0, 'colsample_bylevel': 1.0, 'lambda': 0.0, 'alpha': 0.0 } }) model = arboretum.Garden(config, data) # grow trees for i in range(2): model.grow_tree() # predict on train data set pred = model.predict(data) # print first n records print(pred) mat = xgboost.DMatrix(iris.data[index, 0:n], label=y) param = {'max_depth': 5, 'silent': True, 'objective': "reg:logistic"} param['nthread'] = 1 param['min_child_weight'] = 2