示例#1
0
    def test_variances_and_selection(self):
        adj_models = self.models + linspace(-2, 0.5, self.k)
        spa = SPA(self.benchmark, adj_models, block_size=10, reps=10)
        spa.seed(23456)
        spa.compute()
        variances = spa._loss_diff_var
        loss_diffs = spa._loss_diff
        demeaned = spa._loss_diff - loss_diffs.mean(0)
        t = loss_diffs.shape[0]
        kernel_weights = np.zeros(t)
        p = 1 / 10.0
        for i in range(1, t):
            kernel_weights[i] = ((1.0 - (i / t)) * ((1 - p) ** i)) + ((i / t) * ((1 - p) ** (t - i)))
        direct_vars = (demeaned ** 2).sum(0) / t
        for i in range(1, t):
            direct_vars += 2 * kernel_weights[i] * (demeaned[:t - i, :] * demeaned[i:, :]).sum(0) / t
        assert_allclose(direct_vars, variances)

        selection_criteria = -1.0 * np.sqrt((direct_vars / t) * 2 * np.log(np.log(t)))
        valid = loss_diffs.mean(0) >= selection_criteria
        assert_equal(valid, spa._valid_columns)

        # Bootstrap variances
        spa = SPA(self.benchmark, self.models, block_size=10, reps=100, nested=True)
        spa.seed(23456)
        spa.compute()
        spa.reset()
        bs = spa.bootstrap.clone(demeaned)
        variances = spa._loss_diff_var
        bootstrap_variances = t * bs.var(lambda x: x.mean(0), reps=100, recenter=True)
        assert_allclose(bootstrap_variances, variances)
 def test_seed_reset(self):
     spa = SPA(self.benchmark, self.models, reps=10)
     spa.seed(23456)
     initial_state = spa.bootstrap.random_state
     assert_equal(spa.bootstrap._seed, 23456)
     spa.compute()
     spa.reset()
     assert_equal(spa._pvalues, None)
     assert_equal(spa.bootstrap.random_state, initial_state)
示例#3
0
 def test_seed_reset(self):
     spa = SPA(self.benchmark, self.models, reps=10)
     spa.seed(23456)
     initial_state = spa.bootstrap.random_state
     assert_equal(spa.bootstrap._seed, 23456)
     spa.compute()
     spa.reset()
     assert_equal(spa._pvalues, None)
     assert_equal(spa.bootstrap.random_state, initial_state)
示例#4
0
 def test_equivalence(self):
     spa = SPA(self.benchmark, self.models, block_size=10, reps=100)
     spa.seed(23456)
     spa.compute()
     numpy_pvalues = spa.pvalues
     spa = SPA(self.benchmark_df, self.models_df, block_size=10, reps=100)
     spa.seed(23456)
     spa.compute()
     pandas_pvalues = spa.pvalues
     assert_series_equal(numpy_pvalues, pandas_pvalues)
 def test_equivalence(self):
     spa = SPA(self.benchmark, self.models, block_size=10, reps=100)
     spa.seed(23456)
     spa.compute()
     numpy_pvalues = spa.pvalues
     spa = SPA(self.benchmark_df, self.models_df, block_size=10, reps=100)
     spa.seed(23456)
     spa.compute()
     pandas_pvalues = spa.pvalues
     assert_series_equal(numpy_pvalues, pandas_pvalues)
示例#6
0
    def test_pvalues_and_critvals(self):
        spa = SPA(self.benchmark, self.models, reps=100)
        spa.compute()
        spa.seed(23456)
        simulated_vals = spa._simulated_vals
        max_stats = np.max(simulated_vals, 0)
        max_loss_diff = np.max(spa._loss_diff.mean(0), 0)
        pvalues = np.mean(max_loss_diff <= max_stats, 0)
        pvalues = pd.Series(pvalues, index=['lower', 'consistent', 'upper'])
        assert_series_equal(pvalues, spa.pvalues)

        crit_vals = np.percentile(max_stats, 90.0, axis=0)
        crit_vals = pd.Series(crit_vals, index=['lower', 'consistent', 'upper'])
        assert_series_equal(spa.critical_values(0.10), crit_vals)
    def test_pvalues_and_critvals(self):
        spa = SPA(self.benchmark, self.models, reps=100)
        spa.compute()
        spa.seed(23456)
        simulated_vals = spa._simulated_vals
        max_stats = np.max(simulated_vals, 0)
        max_loss_diff = np.max(spa._loss_diff.mean(0), 0)
        pvalues = np.mean(max_loss_diff <= max_stats, 0)
        pvalues = pd.Series(pvalues, index=['lower', 'consistent', 'upper'])
        assert_series_equal(pvalues, spa.pvalues)

        crit_vals = np.percentile(max_stats, 90.0, axis=0)
        crit_vals = pd.Series(crit_vals,
                              index=['lower', 'consistent', 'upper'])
        assert_series_equal(spa.critical_values(0.10), crit_vals)
    def test_variances_and_selection(self):
        adj_models = self.models + linspace(-2, 0.5, self.k)
        spa = SPA(self.benchmark, adj_models, block_size=10, reps=10)
        spa.seed(23456)
        spa.compute()
        variances = spa._loss_diff_var
        loss_diffs = spa._loss_diff
        demeaned = spa._loss_diff - loss_diffs.mean(0)
        t = loss_diffs.shape[0]
        kernel_weights = np.zeros(t)
        p = 1 / 10.0
        for i in range(1, t):
            kernel_weights[i] = ((1.0 - (i / t)) *
                                 ((1 - p)**i)) + ((i / t) * ((1 - p)**(t - i)))
        direct_vars = (demeaned**2).sum(0) / t
        for i in range(1, t):
            direct_vars += 2 * kernel_weights[i] * (demeaned[:t - i, :] *
                                                    demeaned[i:, :]).sum(0) / t
        assert_allclose(direct_vars, variances)

        selection_criteria = -1.0 * np.sqrt(
            (direct_vars / t) * 2 * np.log(np.log(t)))
        valid = loss_diffs.mean(0) >= selection_criteria
        assert_equal(valid, spa._valid_columns)

        # Bootstrap variances
        spa = SPA(self.benchmark,
                  self.models,
                  block_size=10,
                  reps=100,
                  nested=True)
        spa.seed(23456)
        spa.compute()
        spa.reset()
        bs = spa.bootstrap.clone(demeaned)
        variances = spa._loss_diff_var
        bootstrap_variances = t * bs.var(
            lambda x: x.mean(0), reps=100, recenter=True)
        assert_allclose(bootstrap_variances, variances)
示例#9
0
def exp_symbols_statistics(fout_path=os.path.join(
    DATA_DIR, 'exp_symbols_statistics.xlsx')):
    """
    statistics of experiment symbols
    output the results to xlsx
    """
    t0 = time()
    fin_path = os.path.join(SYMBOLS_PKL_DIR,
                            'TAIEX_2005_largest50cap_panel.pkl')
    # shape: (n_exp_period, n_stock, ('simple_roi', 'close_price'))
    panel = pd.read_pickle(fin_path)

    assert panel.major_axis.tolist() == EXP_SYMBOLS
    panel = panel.loc[date(2005, 1, 3):date(2014, 12, 31)]

    # the roi in the first experiment date is zero
    panel.loc[date(2005, 1, 3), :, 'simple_roi'] = 0.

    stat_indices = (
        # basic information
        'start_date', 'end_date',
        'n_exp_period', 'n_period_up', 'n_period_down',

        # roi
        'cum_roi', 'daily_roi', 'daily_mean_roi',
        'daily_std_roi', 'daily_skew_roi', 'daily_kurt_roi',

        # roi/risk indices
        'sharpe', 'sortino_full', 'sortino_full_semi_std',
        'sortino_partial', 'sortino_partial_semi_std',
        'max_abs_drawdown',

        # normal tests
        'JB', 'JB_pvalue',

        # uni-root tests
        'ADF_c',
        'ADF_c_pvalue',
        'ADF_ct',
        'ADF_ct_pvalue',
        'ADF_ctt',
        'ADF_ctt_pvalue',
        'ADF_nc',
        'ADF_nc_pvalue',
        'DFGLS_c',
        'DFGLS_c_pvalue',
        'DFGLS_ct',
        'DFGLS_ct_pvalue',
        'PP_c',
        'PP_c_pvalue',
        'PP_ct',
        'PP_ct_pvalue',
        'PP_nc',
        'PP_nc_pvalue',
        'KPSS_c',
        'KPSS_c_pvalue',
        'KPSS_ct',
        'KPSS_ct_pvalue',

        # performance
        'SPA_l_pvalue', 'SPA_c_pvalue', 'SPA_u_pvalue'
    )

    stat_df = pd.DataFrame(np.zeros((len(stat_indices), len(EXP_SYMBOLS))),
                           index=stat_indices,
                           columns=EXP_SYMBOLS)

    for rdx, symbol in enumerate(EXP_SYMBOLS):
        t1 = time()
        rois = panel[:, symbol, 'simple_roi']
        # basic
        stat_df.loc['start_date', symbol] = rois.index[0].strftime("%Y/%b/%d")
        stat_df.loc['end_date', symbol] = rois.index[-1].strftime("%Y/%b/%d")
        stat_df.loc['n_exp_period', symbol] = len(rois)
        stat_df.loc['n_period_up', symbol] = (rois > 0).sum()
        stat_df.loc['n_period_down', symbol] = (rois < 0).sum()

        # roi
        stat_df.loc['cum_roi', symbol] = (rois + 1.).prod() - 1
        stat_df.loc['daily_roi', symbol] = np.power((rois + 1.).prod(),
                                                    1. / len(rois)) - 1
        stat_df.loc['daily_mean_roi', symbol] = rois.mean()
        stat_df.loc['daily_std_roi', symbol] = rois.std()
        stat_df.loc['daily_skew_roi', symbol] = rois.skew()
        stat_df.loc['daily_kurt_roi', symbol] = rois.kurt()  # excess

        # roi/risk indices
        stat_df.loc['sharpe', symbol] = sharpe(rois)
        (stat_df.loc['sortino_full', symbol],
         stat_df.loc['sortino_full_semi_std', symbol]) = sortino_full(rois)

        (stat_df.loc['sortino_partial', symbol],
         stat_df.loc['sortino_partial_semi_std', symbol]) = sortino_partial(
            rois)

        stat_df.loc['max_abs_drawdown', symbol] = maximum_drawdown(rois)

        # normal tests
        jb = jarque_bera(rois)
        stat_df.loc['JB', symbol] = jb[0]
        stat_df.loc['JB_pvalue', symbol] = jb[1]

        # uniroot tests
        adf_c = adfuller(rois, regression='c')
        stat_df.loc['ADF_c', symbol] = adf_c[0]
        stat_df.loc['ADF_c_pvalue', symbol] = adf_c[1]

        adf_ct = adfuller(rois, regression='ct')
        stat_df.loc['ADF_ct', symbol] = adf_ct[0]
        stat_df.loc['ADF_ct_pvalue', symbol] = adf_ct[1]

        adf_ctt = adfuller(rois, regression='ctt')
        stat_df.loc['ADF_ctt', symbol] = adf_ctt[0]
        stat_df.loc['ADF_ctt_pvalue', symbol] = adf_ctt[1]

        adf_nc = adfuller(rois, regression='nc')
        stat_df.loc['ADF_nc', symbol] = adf_nc[0]
        stat_df.loc['ADF_nc_pvalue', symbol] = adf_nc[1]

        dfgls_c_instance = DFGLS(rois, trend='c')
        dfgls_c, dfgls_c_pvalue = (dfgls_c_instance.stat,
                                   dfgls_c_instance.pvalue)
        stat_df.loc['DFGLS_c', symbol] = dfgls_c
        stat_df.loc['DFGLS_c_pvalue', symbol] = dfgls_c_pvalue

        dfgls_ct_instance = DFGLS(rois, trend='ct')
        dfgls_ct, dfgls_ct_pvalue = (dfgls_ct_instance.stat,
                                     dfgls_ct_instance.pvalue)
        stat_df.loc['DFGLS_ct', symbol] = dfgls_ct
        stat_df.loc['DFGLS_ct_pvalue', symbol] = dfgls_ct_pvalue

        pp_c_instance = PhillipsPerron(rois, trend='c')
        pp_c, pp_c_pvalue = (pp_c_instance.stat, pp_c_instance.pvalue)
        stat_df.loc['PP_c', symbol] = pp_c
        stat_df.loc['PP_c_pvalue', symbol] = pp_c_pvalue

        pp_ct_instance = PhillipsPerron(rois, trend='ct')
        pp_ct, pp_ct_pvalue = (pp_ct_instance.stat, pp_ct_instance.pvalue)
        stat_df.loc['PP_ct', symbol] = pp_ct
        stat_df.loc['PP_ct_pvalue', symbol] = pp_ct_pvalue

        pp_nc_instance = PhillipsPerron(rois, trend='nc')
        pp_nc, pp_nc_pvalue = (pp_nc_instance.stat, pp_nc_instance.pvalue)
        stat_df.loc['PP_nc', symbol] = pp_nc
        stat_df.loc['PP_nc_pvalue', symbol] = pp_nc_pvalue

        kpss_c_instance = KPSS(rois, trend='c')
        kpss_c, kpss_c_pvalue = (kpss_c_instance.stat, kpss_c_instance.pvalue)
        stat_df.loc['KPSS_c', symbol] = kpss_c
        stat_df.loc['KPSS_c_pvalue', symbol] = kpss_c_pvalue

        kpss_ct_instance = KPSS(rois, trend='ct')
        kpss_ct, kpss_ct_pvalue = (kpss_ct_instance.stat,
                                   kpss_ct_instance.pvalue)
        stat_df.loc['KPSS_ct', symbol] = kpss_ct
        stat_df.loc['KPSS_ct_pvalue', symbol] = kpss_ct_pvalue

        # performance
        spa = SPA(rois, np.zeros(len(rois)), reps=5000)
        spa.seed(np.random.randint(0, 2 ** 31 - 1))
        spa.compute()
        stat_df.loc['SPA_l_pvalue', symbol] = spa.pvalues[0]
        stat_df.loc['SPA_c_pvalue', symbol] = spa.pvalues[1]
        stat_df.loc['SPA_u_pvalue', symbol] = spa.pvalues[2]

        print ("[{}/{}] {} roi statistics OK, {:.3f} secs".format(
            rdx + 1, len(EXP_SYMBOLS), symbol, time() - t1
        ))

    # write to excel
    writer = pd.ExcelWriter(fout_path, engine='xlsxwriter')
    stat_df = stat_df.T
    stat_df.to_excel(writer, sheet_name='stats')

    # Get the xlsxwriter workbook and worksheet objects.
    workbook = writer.book
    worksheet = writer.sheets['stats']

    # basic formats.
    # set header
    header_fmt = workbook.add_format()
    header_fmt.set_text_wrap()
    worksheet.set_row(0, 15, header_fmt)

    # set date
    date_fmt = workbook.add_format({'num_format': 'yy/mmm/dd'})
    date_fmt.set_align('right')
    worksheet.set_column('B:C', 12, date_fmt)

    # set percentage
    percent_fmt = workbook.add_format({'num_format': '0.00%'})

    worksheet.set_column('G:J', 8, percent_fmt)
    worksheet.set_column('M:Q', 8, percent_fmt)

    worksheet.set_column('T:T', 8, percent_fmt)
    worksheet.set_column('V:V', 8, percent_fmt)
    worksheet.set_column('X:X', 8, percent_fmt)
    worksheet.set_column('Z:Z', 8, percent_fmt)
    worksheet.set_column('AB:AB', 8, percent_fmt)
    worksheet.set_column('AD:AD', 8, percent_fmt)
    worksheet.set_column('AF:AF', 8, percent_fmt)
    worksheet.set_column('AH:AH', 8, percent_fmt)
    worksheet.set_column('AJ:AJ', 8, percent_fmt)
    worksheet.set_column('AL:AL', 8, percent_fmt)
    worksheet.set_column('AN:AN', 8, percent_fmt)
    worksheet.set_column('AP:AP', 8, percent_fmt)
    worksheet.set_column('AQ:AS', 8, percent_fmt)

    writer.save()

    print ("all roi statistics OK, {:.3f} secs".format(time() - t0))
示例#10
0
def exp_symbols_statistics(fout_path=os.path.join(
    DATA_DIR, 'exp_symbols_statistics.xlsx')):
    """
    statistics of experiment symbols
    output the results to xlsx
    """
    t0 = time()
    fin_path = os.path.join(SYMBOLS_PKL_DIR,
                            'TAIEX_2005_largest50cap_panel.pkl')
    # shape: (n_exp_period, n_stock, ('simple_roi', 'close_price'))
    panel = pd.read_pickle(fin_path)

    assert panel.major_axis.tolist() == EXP_SYMBOLS
    panel = panel.loc[date(2005, 1, 3):date(2014, 12, 31)]

    # the roi in the first experiment date is zero
    panel.loc[date(2005, 1, 3), :, 'simple_roi'] = 0.

    stat_indices = (
        # basic information
        'start_date',
        'end_date',
        'n_exp_period',
        'n_period_up',
        'n_period_down',

        # roi
        'cum_roi',
        'daily_roi',
        'daily_mean_roi',
        'daily_std_roi',
        'daily_skew_roi',
        'daily_kurt_roi',

        # roi/risk indices
        'sharpe',
        'sortino_full',
        'sortino_full_semi_std',
        'sortino_partial',
        'sortino_partial_semi_std',
        'max_abs_drawdown',

        # normal tests
        'JB',
        'JB_pvalue',

        # uni-root tests
        'ADF_c',
        'ADF_c_pvalue',
        'ADF_ct',
        'ADF_ct_pvalue',
        'ADF_ctt',
        'ADF_ctt_pvalue',
        'ADF_nc',
        'ADF_nc_pvalue',
        'DFGLS_c',
        'DFGLS_c_pvalue',
        'DFGLS_ct',
        'DFGLS_ct_pvalue',
        'PP_c',
        'PP_c_pvalue',
        'PP_ct',
        'PP_ct_pvalue',
        'PP_nc',
        'PP_nc_pvalue',
        'KPSS_c',
        'KPSS_c_pvalue',
        'KPSS_ct',
        'KPSS_ct_pvalue',

        # performance
        'SPA_l_pvalue',
        'SPA_c_pvalue',
        'SPA_u_pvalue')

    stat_df = pd.DataFrame(np.zeros((len(stat_indices), len(EXP_SYMBOLS))),
                           index=stat_indices,
                           columns=EXP_SYMBOLS)

    for rdx, symbol in enumerate(EXP_SYMBOLS):
        t1 = time()
        rois = panel[:, symbol, 'simple_roi']
        # basic
        stat_df.loc['start_date', symbol] = rois.index[0].strftime("%Y/%b/%d")
        stat_df.loc['end_date', symbol] = rois.index[-1].strftime("%Y/%b/%d")
        stat_df.loc['n_exp_period', symbol] = len(rois)
        stat_df.loc['n_period_up', symbol] = (rois > 0).sum()
        stat_df.loc['n_period_down', symbol] = (rois < 0).sum()

        # roi
        stat_df.loc['cum_roi', symbol] = (rois + 1.).prod() - 1
        stat_df.loc['daily_roi', symbol] = np.power(
            (rois + 1.).prod(), 1. / len(rois)) - 1
        stat_df.loc['daily_mean_roi', symbol] = rois.mean()
        stat_df.loc['daily_std_roi', symbol] = rois.std()
        stat_df.loc['daily_skew_roi', symbol] = rois.skew()
        stat_df.loc['daily_kurt_roi', symbol] = rois.kurt()  # excess

        # roi/risk indices
        stat_df.loc['sharpe', symbol] = sharpe(rois)
        (stat_df.loc['sortino_full',
                     symbol], stat_df.loc['sortino_full_semi_std',
                                          symbol]) = sortino_full(rois)

        (stat_df.loc['sortino_partial',
                     symbol], stat_df.loc['sortino_partial_semi_std',
                                          symbol]) = sortino_partial(rois)

        stat_df.loc['max_abs_drawdown', symbol] = maximum_drawdown(rois)

        # normal tests
        jb = jarque_bera(rois)
        stat_df.loc['JB', symbol] = jb[0]
        stat_df.loc['JB_pvalue', symbol] = jb[1]

        # uniroot tests
        adf_c = adfuller(rois, regression='c')
        stat_df.loc['ADF_c', symbol] = adf_c[0]
        stat_df.loc['ADF_c_pvalue', symbol] = adf_c[1]

        adf_ct = adfuller(rois, regression='ct')
        stat_df.loc['ADF_ct', symbol] = adf_ct[0]
        stat_df.loc['ADF_ct_pvalue', symbol] = adf_ct[1]

        adf_ctt = adfuller(rois, regression='ctt')
        stat_df.loc['ADF_ctt', symbol] = adf_ctt[0]
        stat_df.loc['ADF_ctt_pvalue', symbol] = adf_ctt[1]

        adf_nc = adfuller(rois, regression='nc')
        stat_df.loc['ADF_nc', symbol] = adf_nc[0]
        stat_df.loc['ADF_nc_pvalue', symbol] = adf_nc[1]

        dfgls_c_instance = DFGLS(rois, trend='c')
        dfgls_c, dfgls_c_pvalue = (dfgls_c_instance.stat,
                                   dfgls_c_instance.pvalue)
        stat_df.loc['DFGLS_c', symbol] = dfgls_c
        stat_df.loc['DFGLS_c_pvalue', symbol] = dfgls_c_pvalue

        dfgls_ct_instance = DFGLS(rois, trend='ct')
        dfgls_ct, dfgls_ct_pvalue = (dfgls_ct_instance.stat,
                                     dfgls_ct_instance.pvalue)
        stat_df.loc['DFGLS_ct', symbol] = dfgls_ct
        stat_df.loc['DFGLS_ct_pvalue', symbol] = dfgls_ct_pvalue

        pp_c_instance = PhillipsPerron(rois, trend='c')
        pp_c, pp_c_pvalue = (pp_c_instance.stat, pp_c_instance.pvalue)
        stat_df.loc['PP_c', symbol] = pp_c
        stat_df.loc['PP_c_pvalue', symbol] = pp_c_pvalue

        pp_ct_instance = PhillipsPerron(rois, trend='ct')
        pp_ct, pp_ct_pvalue = (pp_ct_instance.stat, pp_ct_instance.pvalue)
        stat_df.loc['PP_ct', symbol] = pp_ct
        stat_df.loc['PP_ct_pvalue', symbol] = pp_ct_pvalue

        pp_nc_instance = PhillipsPerron(rois, trend='nc')
        pp_nc, pp_nc_pvalue = (pp_nc_instance.stat, pp_nc_instance.pvalue)
        stat_df.loc['PP_nc', symbol] = pp_nc
        stat_df.loc['PP_nc_pvalue', symbol] = pp_nc_pvalue

        kpss_c_instance = KPSS(rois, trend='c')
        kpss_c, kpss_c_pvalue = (kpss_c_instance.stat, kpss_c_instance.pvalue)
        stat_df.loc['KPSS_c', symbol] = kpss_c
        stat_df.loc['KPSS_c_pvalue', symbol] = kpss_c_pvalue

        kpss_ct_instance = KPSS(rois, trend='ct')
        kpss_ct, kpss_ct_pvalue = (kpss_ct_instance.stat,
                                   kpss_ct_instance.pvalue)
        stat_df.loc['KPSS_ct', symbol] = kpss_ct
        stat_df.loc['KPSS_ct_pvalue', symbol] = kpss_ct_pvalue

        # performance
        spa = SPA(rois, np.zeros(len(rois)), reps=5000)
        spa.seed(np.random.randint(0, 2**31 - 1))
        spa.compute()
        stat_df.loc['SPA_l_pvalue', symbol] = spa.pvalues[0]
        stat_df.loc['SPA_c_pvalue', symbol] = spa.pvalues[1]
        stat_df.loc['SPA_u_pvalue', symbol] = spa.pvalues[2]

        print("[{}/{}] {} roi statistics OK, {:.3f} secs".format(
            rdx + 1, len(EXP_SYMBOLS), symbol,
            time() - t1))

    # write to excel
    writer = pd.ExcelWriter(fout_path, engine='xlsxwriter')
    stat_df = stat_df.T
    stat_df.to_excel(writer, sheet_name='stats')

    # Get the xlsxwriter workbook and worksheet objects.
    workbook = writer.book
    worksheet = writer.sheets['stats']

    # basic formats.
    # set header
    header_fmt = workbook.add_format()
    header_fmt.set_text_wrap()
    worksheet.set_row(0, 15, header_fmt)

    # set date
    date_fmt = workbook.add_format({'num_format': 'yy/mmm/dd'})
    date_fmt.set_align('right')
    worksheet.set_column('B:C', 12, date_fmt)

    # set percentage
    percent_fmt = workbook.add_format({'num_format': '0.00%'})

    worksheet.set_column('G:J', 8, percent_fmt)
    worksheet.set_column('M:Q', 8, percent_fmt)

    worksheet.set_column('T:T', 8, percent_fmt)
    worksheet.set_column('V:V', 8, percent_fmt)
    worksheet.set_column('X:X', 8, percent_fmt)
    worksheet.set_column('Z:Z', 8, percent_fmt)
    worksheet.set_column('AB:AB', 8, percent_fmt)
    worksheet.set_column('AD:AD', 8, percent_fmt)
    worksheet.set_column('AF:AF', 8, percent_fmt)
    worksheet.set_column('AH:AH', 8, percent_fmt)
    worksheet.set_column('AJ:AJ', 8, percent_fmt)
    worksheet.set_column('AL:AL', 8, percent_fmt)
    worksheet.set_column('AN:AN', 8, percent_fmt)
    worksheet.set_column('AP:AP', 8, percent_fmt)
    worksheet.set_column('AQ:AS', 8, percent_fmt)

    writer.save()

    print("all roi statistics OK, {:.3f} secs".format(time() - t0))