def test_test_matrix(self): with testing.postgresql.Postgresql() as postgresql: # create an engine and generate a table with fake feature data engine = create_engine(postgresql.url()) create_schemas(engine=engine, features_tables=features_tables, labels=labels, states=states) dates = [ datetime.datetime(2016, 1, 1, 0, 0), datetime.datetime(2016, 2, 1, 0, 0), datetime.datetime(2016, 3, 1, 0, 0) ] with TemporaryDirectory() as temp_dir: planner = Planner(feature_start_time=datetime.datetime( 2010, 1, 1, 0, 0), label_names=['booking'], label_types=['binary'], states=['state_one AND state_two'], db_config=db_config, matrix_directory=temp_dir, user_metadata={}, engine=engine) matrix_dates = { 'first_as_of_time': datetime.datetime(2016, 1, 1, 0, 0), 'matrix_info_end_time': datetime.datetime(2016, 3, 1, 0, 0), 'as_of_times': dates } feature_dictionary = { 'features0': ['f1', 'f2'], 'features1': ['f3', 'f4'], } matrix_metadata = { 'matrix_id': 'hi', 'state': 'state_one AND state_two', 'label_name': 'booking', 'end_time': datetime.datetime(2016, 3, 1, 0, 0), 'feature_start_time': datetime.datetime(2016, 1, 1, 0, 0), 'label_timespan': '1 month' } uuid = metta.generate_uuid(matrix_metadata) planner.build_matrix(as_of_times=dates, label_name='booking', label_type='binary', feature_dictionary=feature_dictionary, matrix_directory=temp_dir, matrix_metadata=matrix_metadata, matrix_uuid=uuid, matrix_type='test') matrix_filename = os.path.join(temp_dir, '{}.csv'.format(uuid)) with open(matrix_filename, 'r') as f: reader = csv.reader(f) assert (len([row for row in reader]) == 6)
def test_train_matrix(self): with testing.postgresql.Postgresql() as postgresql: # create an engine and generate a table with fake feature data engine = create_engine(postgresql.url()) create_schemas( engine=engine, features_tables=features_tables, labels=labels, states=states ) dates = [datetime.datetime(2016, 1, 1, 0, 0), datetime.datetime(2016, 2, 1, 0, 0), datetime.datetime(2016, 3, 1, 0, 0)] with TemporaryDirectory() as temp_dir: planner = Planner( beginning_of_time = datetime.datetime(2010, 1, 1, 0, 0), label_names = ['booking'], label_types = ['binary'], states = ['state_one AND state_two'], db_config = db_config, matrix_directory = temp_dir, user_metadata = {}, engine = engine ) feature_dictionary = { 'features0': ['f1', 'f2'], 'features1': ['f3', 'f4'], } matrix_metadata = { 'matrix_id': 'hi', 'state': 'state_one AND state_two', 'label_name': 'booking', 'end_time': datetime.datetime(2016, 3, 1, 0, 0), 'beginning_of_time': datetime.datetime(2016, 1, 1, 0, 0), 'label_window': '1 month' } uuid = metta.generate_uuid(matrix_metadata) planner.build_matrix( as_of_times = dates, label_name = 'booking', label_type = 'binary', feature_dictionary = feature_dictionary, matrix_directory = temp_dir, matrix_metadata = matrix_metadata, matrix_uuid = uuid, matrix_type = 'train' ) matrix_filename = os.path.join( temp_dir, '{}.csv'.format(uuid) ) with open(matrix_filename, 'r') as f: reader = csv.reader(f) assert(len([row for row in reader]) == 6)
def test_nullcheck(self): f0_dict = {(r[0], r[1]): r for r in features0_pre} f1_dict = {(r[0], r[1]): r for r in features1_pre} features0 = sorted(f0_dict.values(), key=lambda x: (x[1], x[0])) features1 = sorted(f1_dict.values(), key=lambda x: (x[1], x[0])) features_tables = [features0, features1] with testing.postgresql.Postgresql() as postgresql: # create an engine and generate a table with fake feature data engine = create_engine(postgresql.url()) create_schemas(engine=engine, features_tables=features_tables, labels=labels, states=states) dates = [ datetime.datetime(2016, 1, 1, 0, 0), datetime.datetime(2016, 2, 1, 0, 0), datetime.datetime(2016, 3, 1, 0, 0) ] with TemporaryDirectory() as temp_dir: planner = Planner(feature_start_time=datetime.datetime( 2010, 1, 1, 0, 0), label_names=['booking'], label_types=['binary'], states=['state_one AND state_two'], db_config=db_config, matrix_directory=temp_dir, user_metadata={}, engine=engine) matrix_dates = { 'first_as_of_time': datetime.datetime(2016, 1, 1, 0, 0), 'matrix_info_end_time': datetime.datetime(2016, 3, 1, 0, 0), 'as_of_times': dates } feature_dictionary = { 'features0': ['f1', 'f2'], 'features1': ['f3', 'f4'], } matrix_metadata = { 'matrix_id': 'hi', 'state': 'state_one AND state_two', 'label_name': 'booking', 'end_time': datetime.datetime(2016, 3, 1, 0, 0), 'feature_start_time': datetime.datetime(2016, 1, 1, 0, 0), 'label_timespan': '1 month' } uuid = metta.generate_uuid(matrix_metadata) with self.assertRaises(ValueError): planner.build_matrix(as_of_times=dates, label_name='booking', label_type='binary', feature_dictionary=feature_dictionary, matrix_directory=temp_dir, matrix_metadata=matrix_metadata, matrix_uuid=uuid, matrix_type='test')