示例#1
0
 def test_add_column(self):
     name = 'EM_type'
     dtype = ['UNKNOWN', 'FIX', 'SACCADE', 'SP', 'NOISE']
     a = ArffHelper.load(open('test_data/arff_data_example.arff'))
     b = ArffHelper.add_column(a, name, dtype, 'UNKNOWN')
     a['attributes'].append((name, dtype))
     self.assertEqual(a['attributes'], b['attributes'])
示例#2
0
    def _aggregate_data(self, gaze_points_list):
        """
        Aggregate data from @DATA of all arff objects in the input list into a
        new data set in form of a numpy array.

        :param gaze_points_list: gaze data to be clustered in form of list of arff objects.
        :return: data set to be clustered in form of a 6-column numpy array,
                 i.e. ['time','x','y','observer_id','CLUSTER_ID','visited_flag'],
                 ordered by 'time' column value.

        """
        data_set = []
        for i in range(len(gaze_points_list)):
            gaze_points_data = gaze_points_list[i]['data'][(
                gaze_points_list[i]['data']['EYE_MOVEMENT_TYPE'] == 'UNKNOWN'
            )][['time', 'x', 'y', 'global_index']]
            gaze_points_data = ArffHelper.add_column_to_array(
                gaze_points_data, 'observer_id', 'NUMERIC',
                gaze_points_list[i]['metadata']['observer_id'])
            gaze_points_data = ArffHelper.add_column_to_array(
                gaze_points_data, 'CLUSTER_ID', 'NUMERIC', -1)
            gaze_points_data = ArffHelper.add_column_to_array(
                gaze_points_data, 'visited_flag', 'NUMERIC', 0)
            if len(gaze_points_data) > 0:
                data_set.append(gaze_points_data)
        data_set = np.concatenate(data_set)
        data_set = np.sort(data_set, order='time')

        return data_set
示例#3
0
    def wrapper(*args, **kwargs):
        output_arff_fname = inspect.getcallargs(func, *args, **kwargs).get('output_arff_fname', None)
        arff_obj = func(*args, **kwargs)

        if output_arff_fname is not None:
            with open(output_arff_fname, 'w') as arff_out:
                ArffHelper.dump(arff_obj, arff_out)
        return arff_obj
示例#4
0
def add_eye_movement_attribute(arff_object):
    """
    Add the EYE_MOVEMENT_TYPE attribute to the @arff_object. If already present, do nothing.
    :param arff_object: arff object
    :return: arff object with added column for eye movement type
    """
    from recording_processor import EM_TYPE_ATTRIBUTE_NAME, EM_TYPE_ARFF_DATA_TYPE, EM_TYPE_DEFAULT_VALUE
    if 'EYE_MOVEMENT_TYPE' not in arff_object['data'].dtype.names:
        ArffHelper.add_column(arff_object, EM_TYPE_ATTRIBUTE_NAME,
                              EM_TYPE_ARFF_DATA_TYPE, EM_TYPE_DEFAULT_VALUE)
    return arff_object
示例#5
0
    def cluster(self, gaze_points_list, inplace=False):
        """
        Find clusters of input gaze data and label clustered points as smooth pursuit.
        Labels (sets the 'EYE_MOVEMENT_TYPE' field) the clusters of data points as 'SP',
        other samples as 'NOISE_CLUSTER'.

        New column 'CLUSTER_ID' is added into the @DATA section of each arff object in @gaze_points_list,
        indicating cluster group ID.

        :param gaze_points_list: a list of arff objects (dictionary with fields such as 'data' and 'metadata')
        :param inplace: whether to modify the original input gaze data with gaze data after clustering or use a copy
        :return: gaze data after clustering in the same form as the input data.

        """
        if not inplace:
            gaze_points_list = copy.deepcopy(gaze_points_list)

        # add global indexing to be able to reference the particular sample even after clustering all in one structure
        for ind in xrange(len(gaze_points_list)):
            ArffHelper.add_column(gaze_points_list[ind], name='global_index', dtype='INTEGER', default_value=-1)
            gaze_points_list[ind]['data']['global_index'] = np.arange(gaze_points_list[ind]['data'].shape[0])

        self._setup_internal_parameters(gaze_points_list)
        self._data_set = self._aggregate_data(gaze_points_list)
        # has to be a copy, so that is is placed continuously in memory
        self._timestamps = self._data_set['time'].copy()

        current_cluster_id = 0

        for i in xrange(len(self._data_set)):
            if self._data_set[i]['visited_flag'] == 1:
                continue
            else:
                self._data_set[i]['visited_flag'] = 1
                neighbourhood = self._get_neighbourhood(i)
                if self._validate_neighbourhood(neighbourhood):
                    # if not: mark current point as NOISE
                    self._expand_cluster(i, neighbourhood, current_cluster_id)
                    current_cluster_id += 1

        # create a new column in gaze_points_list for CLUSTER_ID
        for i in xrange(len(gaze_points_list)):
            ArffHelper.add_column(gaze_points_list[i], 'CLUSTER_ID', 'NUMERIC', -1)

        # label data in gaze_points_list as SP according to CLUSTER_ID
        for i in xrange(len(self._data_set)):
            observer_id = int(self._data_set[i]['observer_id'])
            global_index = self._data_set[i]['global_index']

            if self._data_set[i]['CLUSTER_ID'] != -1:
                gaze_points_list[observer_id]['data']['EYE_MOVEMENT_TYPE'][global_index] = 'SP'
                gaze_points_list[observer_id]['data']['CLUSTER_ID'][global_index] = self._data_set[i]['CLUSTER_ID']
            else:
                gaze_points_list[observer_id]['data']['EYE_MOVEMENT_TYPE'][global_index] = 'NOISE_CLUSTER'

        # can now remove the global_index column
        for ind in xrange(len(gaze_points_list)):
            ArffHelper.remove_column(gaze_points_list[ind], name='global_index')

        return gaze_points_list
示例#6
0
    def test_dump(self):
        a = ArffHelper.load(open('test_data/arff_data_example.arff'))
        # close the returned file handle after dump has been completed
        ArffHelper.dump(a, open('test_data/test_dump.arff', 'w')).close()
        b = arff.load(open('test_data/test_dump.arff'))
        c = arff.load(open('test_data/arff_data_example.arff'))

        del (a['metadata'])
        del (a['description'])
        del (b['description'])
        del (c['description'])

        np.testing.assert_almost_equal(a['data'].tolist(), b['data'], 2)
        np.testing.assert_almost_equal(a['data'].tolist(), c['data'], 2)

        del (a['data'])
        del (b['data'])
        del (c['data'])

        self.assertEqual(a, b)
        self.assertEqual(a, c)
        os.remove('test_data/test_dump.arff')
示例#7
0
    def test_load(self):
        a = ArffHelper.load(open('test_data/arff_data_example.arff'))

        self.assertEqual(a['metadata']['distance_mm'], 450.0)
        del (a['metadata'])

        b = arff.load(open('test_data/arff_data_example.arff'))
        del (a['description'])
        del (b['description'])

        np.testing.assert_almost_equal(a['data'].tolist(), b['data'], 2)
        # tested data equality, can now delete it
        del (a['data'])
        del (b['data'])

        self.assertEqual(a, b)
示例#8
0
def load_ARFF_as_arff_object(fname, eye_movement_type_attribute=None, eye_movement_type_mapping_dict=None):
    """
    Load data from ARFF file format (with %@METADATA comments possible, see [1]).
    We expect and verify that the arff file in question has the columns 'time', 'x' and 'y'
    (for the timestamp, x and y position of the gaze point, respectively).

    [1] http://ieeexplore.ieee.org/abstract/document/7851169/
    :param fname: name of the .arff file
    :param eye_movement_type_attribute: the attribute that should be treated as an indication
                                        of eye movement type, optional;
                                        should be either a string (name of the attribute), or True, in which case
                                        it is substituted by the 'EYE_MOVEMENT_TYPE' string
    :param eye_movement_type_mapping_dict: a dictionary that is used to convert values in column
                                           @eye_movement_type_attribute to values in the following set:
                                           ['UNKNOWN', 'FIX', 'SACCADE', 'SP', 'NOISE', 'BLINK', 'NOISE_CLUSTER']
                                           (as defined by recording_processor.py)
    :return: an arff object
    """
    # EM_VALUE_MAPPING_DEFAULT is the inverse of the dictionary used in evaluation.py.
    # It can be used (with @eye_movement_type_mapping_dict='default'), for instance, to load the files where
    # different eye movements are labelled by numerical values rather than by categorical (i.e. strings), due to
    # arff file implementation in the framework that produced the labels, or some other reason.
    # These values correspond to the ones used in our hand-labelling tool [1].

    arff_obj = ArffHelper.load(open(fname))
    # validate that we have all the essential data
    assert all([attr in arff_obj['data'].dtype.names for attr in ['time', 'x', 'y']]), \
        'File {} must contain at least "time", "x" and "y" columns'.format(fname)

    if eye_movement_type_attribute is not None:
        from recording_processor import EM_TYPE_ARFF_DATA_TYPE, EM_TYPE_ATTRIBUTE_NAME
        if eye_movement_type_attribute is True:
            eye_movement_type_attribute = EM_TYPE_ATTRIBUTE_NAME

        assert eye_movement_type_attribute in arff_obj['data'].dtype.names, \
            'Attribute {} is not present in the arff structure from file {}'.format(eye_movement_type_attribute,
                                                                                    fname)
        # add the dedicated eye movement type column
        arff_obj = util.add_eye_movement_attribute(arff_obj)
        if eye_movement_type_mapping_dict is None:
            # Check if the column is not yet of the right format.
            # Only need to do this if the attribute is numerical, not categorical!
            if arff_obj['data'][eye_movement_type_attribute].dtype.type is not np.string_:
                correct_flag = all([item in EM_TYPE_ARFF_DATA_TYPE
                                    for item in arff_obj['data'][eye_movement_type_attribute]])
            else:  # nothing to do here, already a categorical attribute
                correct_flag = True

            if correct_flag:
                # already the perfect values in the respective column, just put the same values in the special column
                arff_obj['data']['EYE_MOVEMENT_TYPE'] = arff_obj['data'][eye_movement_type_attribute]
                return arff_obj
            else:
                # if None, act as 'default', if needed
                eye_movement_type_mapping_dict = EM_VALUE_MAPPING_DEFAULT
        elif eye_movement_type_mapping_dict == 'default':
            eye_movement_type_mapping_dict = EM_VALUE_MAPPING_DEFAULT

        assert isinstance(eye_movement_type_mapping_dict, dict), 'Argument @eye_movement_type_mapping_dict must be ' \
                                                                 'either a dict, or None, or a string "default"'
        assert all([v in EM_TYPE_ARFF_DATA_TYPE for v in eye_movement_type_mapping_dict.values()]), \
            'All the values of the provided dictionary must be one of the following: {}'.format(EM_TYPE_ARFF_DATA_TYPE)
        # now map using the dictionary
        original_values = arff_obj['data'][eye_movement_type_attribute]
        mapped_values = [eye_movement_type_mapping_dict[item] for item in original_values]
        arff_obj['data']['EYE_MOVEMENT_TYPE'] = mapped_values

    arff_obj['metadata']['filename'] = fname
    return arff_obj
示例#9
0
def load_DSF_coord_as_arff_object(fname, output_arff_fname=None):
    """
    Load data from the given input .coord file and return an arff object.
    This is a "model" function for writing new data adapters. To create a similarly-functioning method,
    one would need to parse the file under @fname to extract an an arff object (dictionary with special keys)
    ofr the following structure:

    arff_obj = {
        'relation': 'gaze_recording',
        'description': '',
        'data': [],
        'metadata': {},
        'attributes': [('time', 'INTEGER'),
                       ('x', 'NUMERIC'),
                       ('y', 'NUMERIC'),
                       ('confidence', 'NUMERIC')]},
    and fill in its fields.

    'data' should first contain a numpy list of lists (the latter lists should be of the same length as 'attributes'.
    'description' is just a string that gets put into the beginning of the file.
    'metadata' is a dictionary, where the following keys are needed later on:
        - "width_px", "height_px" - pixel dimensions of the video
        - "width_mm", "height_mm" - physical dimensions of the video (in millimeters)
        - "distance_mm" - distance between the observer's eyes and the monitor (in millimeters)
    'attributes' (if additional ones are required) is a list of tuples, each tuple consisting of 2 elements:
        - attribute name
        - attribute type, can be INTEGER (=int64), NUMERIC (=float32), REAL (=double), or a list of strings, which
          means it is a categorical attribute and only these values are accepted.

    After 'data' is filled with appropriate lists of values, call
    >> arff_obj = ArffHelper.convert_data_to_structured_array(arff_obj)
    to (unsurprisingly) convert the data in @arff_obj['data'] into a structured numpy array for easier data access.


    :param fname: name of .coord file.
    :param output_arff_fname: if desired, this function can also convert the input .coord file into an .arff file,
                              that can be further used within this framework as well.
    :return: an arff object with keywords:
             "@RELATION, @DESCRIPTION, @DATA, @METADATA, @ATTRIBUTES".
    """

    load_DSF_coord_as_arff_object.COMMENT_PREFIX = '#'
    # the 'gaze ... ...' line has this many "fields" (defines the video resolution)
    load_DSF_coord_as_arff_object.GAZE_FORMAT_FIELD_COUNT = 3
    # Samples are in lines that look like <timestamp> <x> <y> <confidence>.
    # In case of binocular tracking, these are the mean coordinates of the two eyes anyway.
    load_DSF_coord_as_arff_object.GAZE_SAMPLE_FIELDS = 4

    if not os.path.isfile(fname):
        raise ValueError("No such .coord file named '{}' or incorrect input format of file name".format(fname))

    arff_obj = {
        'relation': 'gaze_recording',
        'description': [],
        'data': [],
        'metadata': OrderedDict(),
        'attributes': [('time', 'INTEGER'),
                       ('x', 'NUMERIC'),
                       ('y', 'NUMERIC'),
                       ('confidence', 'NUMERIC')]}
    description = []

    for line in open(fname):
        line = line.rstrip('\n ')
        if line.startswith(load_DSF_coord_as_arff_object.COMMENT_PREFIX):
            description.append(line[len(load_DSF_coord_as_arff_object.COMMENT_PREFIX):])
            continue

        try:
            ll = line.split()
            # cut out the first needed values (t, x, y, confidence), even if binocular tracking .coord file
            ll = map(float, ll)[:load_DSF_coord_as_arff_object.GAZE_SAMPLE_FIELDS]
            arff_obj['data'].append(ll)
        except ValueError:
            if line.startswith('gaze'):
                words = line.split()
                # This line should the following format:
                # gaze <video width in pixels> <video height in px>
                if len(words) == load_DSF_coord_as_arff_object.GAZE_FORMAT_FIELD_COUNT:
                    arff_obj['metadata']['width_px'] = float(words[1])
                    arff_obj['metadata']['height_px'] = float(words[2])
                else:
                    raise ValueError("Incorrect gaze data format in file {}. "
                                     "Correct format should be 'gaze <width_in_pixels> <height_in_pixels>'".
                                     format(fname))
            elif line.startswith('geometry'):
                words = line.split()
                # This line should the following format:
                # geometry <property_name_1> <value in meters> <property_name_2> <value in meters> ...
                # So we deem every second field as property name or value in meters, respectively.
                # We convert the values to mm.
                for i in xrange(1, len(words), 2):
                    key_mm = '{}_mm'.format(words[i])
                    value_mm = float(words[i + 1]) * 1e3
                    arff_obj['metadata'][key_mm] = value_mm
            continue
    arff_obj['metadata']['filename'] = fname

    arff_obj['description'] = '\n'.join(description)
    arff_obj = ArffHelper.convert_data_to_structured_array(arff_obj)

    return arff_obj
示例#10
0
def run_detection(params):
    """
    Run the entire detection pipeline with given parameters.
    :param params: A two-level dictionary (just like create_parameters_from_args() would return).
                   The only required parameter is @params['GeneralArguments']['input_folder'], which should point
                   to a folder with raw gaze data. The data is assumed to be stored in the following way:
                     (1) for each movie (clip) there should be a separate subdirectory in the input_folder
                     (2) inside these subdirectories all the files with the extension of
                     @params['GeneralArguments']['gaze_extension'] (.coord by default) represent a recording for one
                     observer each.
                   If your data does not get loaded, maybe the appropriate data loader does not get called. You can
                   fix this (provided that the suitable data loader exists in data_loaders.py) by setting
                   @params['GeneralArguments']['input_data_type'] to the correct value (for correspondence see
                   the keys of RecordingProcessor._format_loaders).

                   To summarize, a minimalistic input to run detection with default parameters on your dataset
                   (let's assume you have converted the data to .arff format) would be:

                   run_detection({'GeneralArguments': {'input_folder': 'PATH/TO/YOUR/DATA/FOLDER',
                                                       'gaze_extension': '.arff'}})
    :return: path to results folder
    """
    # make a defaultdict  out of @parameters so that we could always access its first-level keys
    params_default_first_level = defaultdict(dict)
    params_default_first_level.update(params)
    params = params_default_first_level

    verbose = params['GeneralArguments'].get('verbose', False)

    out_folder = params['GeneralArguments'].get('output_folder')
    if out_folder is None:
        out_folder = tempfile.mkdtemp(prefix='sp_tool_')
        warnings.warn('No output folder provided, using {}'.format(out_folder))
    if verbose:
        print >> sys.stderr, 'Outputs will be written to folder', out_folder

    saccade_detector = SaccadeDetector(**params['SaccadeDetector'])
    blink_detector = BlinkDetector(**params['BlinkDetector'])
    fixation_detector = FixationDetector(**params['FixationDetector'])

    recording_processor = RecordingProcessor(saccade_detector=saccade_detector,
                                             blink_detector=blink_detector,
                                             fixation_detector=fixation_detector)

    sp_detector = SmoothPursuitDetector(**params['SmoothPursuitDetector'])

    # The next lines deal with identifying the names of the video clips used for the eye tracking experiment.
    # Can be initialized in various ways, here we just get all video paths be regex and cut off everything that
    # is not needed.
    #
    #
    in_folder = params['GeneralArguments'].get('input_folder')
    if not in_folder:
        raise ValueError('\'input_folder\' is a required parameter of the \'GeneralArguments\' group in @params!')
    folder_names = sorted(glob.glob('{}/*/'.format(in_folder)))  # getting all the folders of the input folder
    # extract names from path
    if not folder_names and verbose:
        print >> sys.stderr, 'No subfolders found under "{}"'.format(in_folder)
    folder_names = [os.path.splitext(os.path.basename(folder.rstrip('/')))[0] for folder in folder_names]

    movies = params['GeneralArguments'].get('movies')
    if movies:  # not empty, restrict to these folders only
        movies = set(movies)
        folder_names = [fn for fn in folder_names if fn in movies]

    if verbose:
        print >> sys.stderr, 'Working with movies:', folder_names

    # data files extension
    gaze_pattern = params['GeneralArguments'].get('gaze_file_pattern', '*.coord')
    if '*' not in gaze_pattern:
        gaze_pattern = '*' + gaze_pattern

    for movie in folder_names:
        full_out_folder = '{}/{}/'.format(out_folder, movie)
        if not os.path.exists(full_out_folder):
            os.makedirs(full_out_folder)
        if verbose:
            print >> sys.stderr, 'Started processing for {},'.format(movie), 'results will appear in', full_out_folder

        # The next lines load the data files of the recording with one particular movie.
        # To do this, here we provide a regex that includes all the .{extension} files in the respective folder.
        #
        #
        gaze_data_files = sorted(glob.glob('{}/{}/{}'.format(in_folder, movie, gaze_pattern)))
        if len(gaze_data_files) == 0:
            print >> sys.stderr, 'Found 0 files with this pattern: "{}". Omitting this directory.'.format(
                '{}/{}/{}'.format(in_folder, movie, gaze_pattern)
            )
            continue
        try:
            # The next line loads the data, labels saccades, blinks and fixations.
            gaze_points_list = recording_processor.load_multiple_recordings(
                gaze_data_files, verbose=verbose, data_format=params['GeneralArguments'].get('input_data_type'))
            # This will label the smooth pursuits
            if verbose:
                print >> sys.stderr, 'Saccades/blinks/fixations are detected, starting SP detection.'
            classified_gaze_points = sp_detector.detect(gaze_points_list)

            # Now just dump the resulting structure into .arff files in the respective subdirectory of the @out_folder
            for file_name, arff_data in zip(gaze_data_files, classified_gaze_points):
                output_file_name = os.path.splitext(os.path.basename(file_name))[0]
                ArffHelper.dump(arff_data, open(
                    '{}/{}.arff'.format(full_out_folder, output_file_name), 'w')).close()
        except Exception as e:
            print >> sys.stderr, 'Had to skip {} due to an error "{}"'.format(movie, e.message)
    return out_folder
示例#11
0
    def detect(self, gaze_points, inplace=False):
        """
        This method labels saccades (also noise) in the provided gaze_points, which should be an arff object
        :param gaze_points: gaze recording data, an arff object (i.e. a dictionary with 'data', 'metadata'
                            and etc. keys)
        :param inplace: whether to replace the data inside @gaze_points or create a new structure
        :return: gaze points with added labels SACCADE, NOISE
        """
        if not inplace:
            gaze_points = copy.deepcopy(gaze_points)

        # also keep track of saccadic and intersaccadic intervals
        detected_saccades_count = 0
        if 'SACC_INTERVAL_INDEX' not in gaze_points['data'].dtype.names:
            ArffHelper.add_column(gaze_points, 'SACC_INTERVAL_INDEX',
                                  'INTEGER', -1)

        # a virtual saccade that finished before the recording for uniform processing
        last_saccade_end = -1
        intersaccadic_intervals_count = 0
        if 'INTERSACC_INTERVAL_INDEX' not in gaze_points['data'].dtype.names:
            ArffHelper.add_column(gaze_points, 'INTERSACC_INTERVAL_INDEX',
                                  'INTEGER', -1)

        # verify that the timestamps are sorted!
        times = gaze_points['data']['time']
        assert all(times[i] <= times[i + 1] for i in xrange(len(times) - 1)), \
            'Timestamps are not sorted in {}'.format(gaze_points['metadata']['filename'])
        # -1 so that the exact value ends up on the right of the searched timestamp
        searchable_timestamps = times - self.VELOCITY_INTEGRAL_INTERVAL_MICROSEC - 1
        # find the indices of the first
        prev_indices = np.searchsorted(times,
                                       searchable_timestamps,
                                       side='right')
        cur_indices = np.arange(len(prev_indices))
        # if the index after search points towards this very data point, take the previous one
        prev_indices[prev_indices == cur_indices] -= 1
        # except for the very first sample
        prev_indices[0] = 0

        # computing velocities
        x_shifts = gaze_points['data']['x'][cur_indices] - gaze_points['data'][
            'x'][prev_indices]
        y_shifts = gaze_points['data']['y'][cur_indices] - gaze_points['data'][
            'y'][prev_indices]
        shifts = np.linalg.norm(np.vstack([x_shifts, y_shifts]), axis=0)
        time_shifts = gaze_points['data']['time'][cur_indices] - gaze_points[
            'data']['time'][prev_indices]
        # keep it above 0, the shifts are 0 there anyway
        time_shifts[time_shifts == 0] += 1

        velocities = shifts / time_shifts  # pixels per microsecond
        ppd = util.calculate_ppd(gaze_points)
        velocities /= ppd  # degree per microsecond
        velocities *= 1e6  # degree per second

        # How many samples back is it reasonable to go?
        time_step = np.diff(times).mean()
        # a big margin of error, 10 times as many samples as would normally need
        extra_samples_count = int(
            np.round((self.MAX_DURATION_MICROSEC * 10) / time_step))
        # Glitch detection: glitches are defined by one of several features.
        #
        # (1) Coordinates far outside the calibrated region (what constitutes far is defined
        # by the tolerance parameter) are assumed to be erroneous.
        is_glitch = np.zeros(gaze_points['data'].shape[0], dtype=np.bool)
        is_glitch[gaze_points['data']['x'] <
                  -gaze_points['metadata']['width_px'] * self.TOLERANCE] = True
        is_glitch[
            gaze_points['data']['y'] < -gaze_points['metadata']['height_px'] *
            self.TOLERANCE] = True
        is_glitch[
            gaze_points['data']['x'] > gaze_points['metadata']['width_px'] *
            (1 + self.TOLERANCE)] = True
        is_glitch[
            gaze_points['data']['y'] > gaze_points['metadata']['height_px'] *
            (1 + self.TOLERANCE)] = True

        # (2) If the @gaze_points supports the estimate of a confidence
        # measure for samples, a confidence lower than 0.1 also indicates
        # a glitch here.
        if 'confidence' in gaze_points['data'].dtype.names:
            is_glitch[gaze_points['data']['confidence'] < 0.1] = True

        # (3) Finally, velocities that exceed \a maxSpeed (default currently
        # set to ~1000 degrees/s) are regarded as glitches as well and labelled as noise
        is_glitch[velocities > self.MAX_SPEED_DEGREE_PER_SEC] = True
        gaze_points['data']['EYE_MOVEMENT_TYPE'][
            velocities > self.MAX_SPEED_DEGREE_PER_SEC] = 'NOISE'

        # Remember first sample after glitch:
        # to prevent saccade detection at the first non-glitch sample
        # that follows, saccade detection is inhibited for that first sample.
        post_glitch = np.diff(is_glitch.astype(int)) == -1
        post_glitch = np.hstack(([False], post_glitch))
        # Remember last sample before glitch:
        # since we normally would suspend the other criteria (incl. speed) if we are inside glitch, we try to avoid
        # border effects in both next-after and last-before glitch samples
        pre_glitch = np.diff(is_glitch.astype(int)) == 1
        pre_glitch = np.hstack((pre_glitch, [False]))
        all_glitch = is_glitch + post_glitch + pre_glitch
        # we will assign glitch samples' labels to NOISE after the saccades have been detected

        # recompute speeds for post-glitch samples
        pre_glitch_indices = np.nonzero(pre_glitch)[0]
        for i in np.nonzero(post_glitch)[0]:
            # find the corresponding start of the glitch
            corresponding_pre_glitch = np.searchsorted(pre_glitch_indices,
                                                       i) - 1
            if corresponding_pre_glitch < 0:
                # no correspondence found, it's the glitch from the beginning of recording ==> set velocity to 0
                velocities[i] = 0
            else:
                # found a completed glitch
                velocities[i] = np.linalg.norm([
                    gaze_points['data']['x'][i] -
                    gaze_points['data']['x'][corresponding_pre_glitch],
                    gaze_points['data']['y'][i] -
                    gaze_points['data']['y'][corresponding_pre_glitch]
                ]) / (times[i] - times[corresponding_pre_glitch]
                      )  # pixels per microsecond
                velocities[i] /= ppd  # degrees per microsecond
                velocities[i] *= 1e6  # degrees per second

        # Looking for saccade seed points
        # saccade seed point should
        # (1) exceed the fast threshold
        # (2) be biologically plausible
        # (3) not be inside a glitch
        saccade_seeds = (velocities > self.THRESHOLD_ONSET_FAST_DEGREE_PER_SEC) * \
                        (velocities < self.MAX_SPEED_DEGREE_PER_SEC) * \
                        (1 - all_glitch)
        saccade_seed_indices = np.nonzero(saccade_seeds)[0]
        for potential_seed_index in saccade_seed_indices:
            if gaze_points['data']['EYE_MOVEMENT_TYPE'][
                    potential_seed_index] != 'UNKNOWN':
                # already labelled this before, ex. as a saccade that started from another seed point
                continue
            if self.verbose == 2:
                print >> sys.stderr, 'potential seed index', potential_seed_index
            # Looking for onset:
            # (1) should be above slow threshold speed
            # (2) should not be a glitch
            # (3) does not yet have a label
            onset_candidates_check = (velocities[max(0, potential_seed_index - extra_samples_count):potential_seed_index] >=
                                      self.THRESHOLD_ONSET_SLOW_DEGREE_PER_SEC) * \
                                     (1 - is_glitch[max(0, potential_seed_index - extra_samples_count):potential_seed_index]) * \
                                     (gaze_points['data']['EYE_MOVEMENT_TYPE'][
                                          max(0, potential_seed_index - extra_samples_count):potential_seed_index
                                      ] == 'UNKNOWN')

            # find the last zero (the next sample after it is the beginning of the last uninterrupted 1-sequence,
            # i.e. the saccade onset
            try:
                last_zero_index = np.nonzero(1 - onset_candidates_check)[0][-1]
            except IndexError:
                # not found
                continue
            saccade_onset_index = last_zero_index + 1 + max(
                0, potential_seed_index -
                extra_samples_count)  # shift accordingly
            # also this should not be the glitch or post/pre-glitch sample
            while all_glitch[saccade_onset_index]:
                saccade_onset_index += 1

            # looking for offset
            # (1) should be above offset speed threshold
            # (2) should not exceed biologically plausible duration threshold
            # (3) should not yet have a label (i.e. not NOISE labelled above)
            offset_candidates_check = (velocities[potential_seed_index:potential_seed_index + extra_samples_count] >=
                                       self.THRESHOLD_OFFSET_DEGREE_PER_SEC) * \
                                      (times[potential_seed_index:potential_seed_index + extra_samples_count] -
                                       times[saccade_onset_index] <= self.MAX_DURATION_MICROSEC)
            # we ignore the criterion around the glitch
            offset_candidates_check += is_glitch[
                potential_seed_index:potential_seed_index +
                extra_samples_count]
            offset_candidates_check += post_glitch[
                potential_seed_index:potential_seed_index +
                extra_samples_count]

            # but there should not yet be a label present, i.e. it's not the NOISE labelled above
            offset_candidates_check *= (
                gaze_points['data']['EYE_MOVEMENT_TYPE']
                [potential_seed_index:potential_seed_index +
                 extra_samples_count] == 'UNKNOWN')

            # find the first zero (this is the first sample with speed below the threshold, i.e. the saccade offset
            try:
                saccade_offset_index = np.nonzero(
                    1 - offset_candidates_check)[0][0]
            except IndexError:
                # no offset found
                continue
            # the index was starting at potential_seed_index
            saccade_offset_index += potential_seed_index

            # if we are finished inside the glitch, we have reached a biological limit of some sorts ==> discard
            if is_glitch[saccade_offset_index]:
                continue

            if self.verbose == 2:
                print >> sys.stderr, 'Found onset/offset indices', saccade_onset_index, saccade_offset_index

            # now validate the saccade parameters
            # (1) it spans at least the minimal necessary interval
            saccade_time = times[saccade_offset_index] - times[
                saccade_onset_index]
            if saccade_time < self.MIN_DURATION_MICROSEC:
                # If the resulting saccade is shorter than
                # a minDuration, we assume that we have only encountered
                # some noise impulse and discard this saccade.
                gaze_points['data']['EYE_MOVEMENT_TYPE'][
                    saccade_onset_index:saccade_offset_index + 1] = 'NOISE'

                if self.verbose == 2:
                    print >> sys.stderr, 'Discarding due to low duration: needed {}, had {}'.\
                        format(self.MIN_DURATION_MICROSEC, saccade_time)
                continue

            # (2) mean velocity is not below the slow onset threshold
            saccade_displacement = np.linalg.norm([
                gaze_points['data']['x'][saccade_offset_index] -
                gaze_points['data']['x'][saccade_onset_index],
                gaze_points['data']['y'][saccade_offset_index] -
                gaze_points['data']['y'][saccade_onset_index],
            ])
            mean_speed = saccade_displacement / saccade_time  # pixels per microsecond
            mean_speed /= ppd  # degrees per microsecond
            mean_speed *= 1e6  # degrees per second
            if mean_speed < self.THRESHOLD_ONSET_SLOW_DEGREE_PER_SEC:
                # Saccades where the average velocity drops below the offset threshold
                # are also discarded (those are often due to some high-velocity samples
                # going in one direction, then jumping back - which is unbiological).
                if self.verbose == 2:
                    print >> sys.stderr, 'Discarding due to low average speed: needed {}, had {}'.format(
                        self.THRESHOLD_ONSET_SLOW_DEGREE_PER_SEC, mean_speed)
                continue

            # If all is okay, we detected a whole saccade
            gaze_points['data']['EYE_MOVEMENT_TYPE'][
                saccade_onset_index:saccade_offset_index + 1] = 'SACCADE'
            # write the saccade index into the appropriate field and update the global count
            gaze_points['data']['SACC_INTERVAL_INDEX'][saccade_onset_index:saccade_offset_index + 1] = \
                detected_saccades_count
            detected_saccades_count += 1
            # from the end of last saccade till the beginning of this one, put appropriate intersaccadic interval index
            # also update the global count of intersaccadic intervals
            gaze_points['data']['INTERSACC_INTERVAL_INDEX'][last_saccade_end + 1:saccade_onset_index] = \
                intersaccadic_intervals_count
            intersaccadic_intervals_count += 1
            last_saccade_end = saccade_offset_index

            if self.verbose:
                print >> sys.stderr, '{0} {1:0.1f} {2:0.1f} {3} {4:0.1f} {5:0.1f}'.format(
                    gaze_points['data'][saccade_onset_index]['time'],
                    gaze_points['data'][saccade_onset_index]['x'],
                    gaze_points['data'][saccade_onset_index]['y'],
                    gaze_points['data'][saccade_offset_index]['time'],
                    gaze_points['data'][saccade_offset_index]['x'],
                    gaze_points['data'][saccade_offset_index]['y'],
                )
        # final intersaccadic interval, if there is one
        gaze_points['data']['INTERSACC_INTERVAL_INDEX'][last_saccade_end + 1:] = \
            intersaccadic_intervals_count
        intersaccadic_intervals_count += 1

        # Override erroneous samples' labels
        gaze_points['data']['EYE_MOVEMENT_TYPE'][is_glitch] = 'NOISE'
        return gaze_points
示例#12
0
    def detect(self, gaze_points, inplace=False):
        """
        Identify and label fixation intervals as 'FIX' and some others as 'NOISE'.

        Fixation identification includes the following steps:
        - First, all inter-saccadic intervals with a dispersion of less than
          a certain spread threshold (@self.PREFILTERING_INTERVAL_SPREAD_THRESHOLD_DEGREES) are marked as fixations.
        - Then, a temporal window (@self.SLIDING_WINDOW_WIDTH_MICROSEC ms) is shifted across the
          remaining data and a non-fixation onset (offset) is marked every
          time speed rises above (fell below) threshold (@self.SPEED_THRESHOLD_DEGREES_PER_SEC).
        - There are two ways for speed calculation: spread and speed.
            -'speed': speed from start point to end point is larger than
                      threshold.
            -'spread': maximum moving speed of either x or y is larger than
                       threshold.
          Data with speed below threshold are labeled as 'FIX'.
        - Finally, non-fixation episodes longer than @self.MINIMAL_SP_DURATION_MICROSEC are kept as 'UNKNOWN',
          the shorter ones are labeled as 'NOISE' (these are fairly dynamic episodes that however should not be SP).

        :param gaze_points: arff object with saccades detected (and intersaccadic intervals labelled)
        :param inplace: whether to replace the data inside @gaze_points or create a new structure
        :return: arff object with data labeled as 'FIX' and 'NOISE'. Some 'UNKNOWN' labels are kept for the next stage.

        """
        if not inplace:
            gaze_points = copy.deepcopy(gaze_points)
        # add a global index column (to keep track of where we are even if working within an intersaccadic interval)
        gaze_points = ArffHelper.add_column(gaze_points,
                                            name='global_index',
                                            dtype='INTEGER',
                                            default_value=-1)
        gaze_points['data']['global_index'] = np.arange(
            gaze_points['data'].shape[0])

        # I. First step of fixation removal: rough prefiltering
        #
        # Convert constants to pixels per second
        ppd = util.calculate_ppd(gaze_points)
        speed_thd = ppd * self.SPEED_THRESHOLD_DEGREES_PER_SEC
        prefiltering_spread_thd = ppd * self.PREFILTERING_INTERVAL_SPREAD_THRESHOLD_DEGREES

        # record intersaccadic interval indices of those intervals that are not labelled as FIX by the prefiltering
        unknown_interval_index = []
        unknown_interval_masks = []
        for i in xrange(
                max(gaze_points['data']['INTERSACC_INTERVAL_INDEX']) + 1):
            mask = gaze_points['data']['INTERSACC_INTERVAL_INDEX'] == i
            intersacc_interval = gaze_points['data'][mask]
            if len(intersacc_interval) == 0:
                continue

            dispersion = [
                max(intersacc_interval['x']) - min(intersacc_interval['x']),
                max(intersacc_interval['y']) - min(intersacc_interval['y'])
            ]

            if any(thd >= prefiltering_spread_thd for thd in dispersion):
                unknown_interval_index.append(i)  # keep unknown
                unknown_interval_masks.append(
                    mask.copy())  # cache the indexing
            else:
                gaze_points['data']['EYE_MOVEMENT_TYPE'][mask] = 'FIX'

        # II. Second step of fixation removal: finer prefiltering
        #

        for i, interval_mask in zip(unknown_interval_index,
                                    unknown_interval_masks):
            # We record the borders of the non-FIX episodes to validate their duration. If the non-FIX episode is very
            # short, we mark it as NOISE (not enough duration for a candidate for smooth pursuit)
            onset_timestamp = None
            onset_index = None

            intersacc_interval = gaze_points['data'][interval_mask]
            intersacc_interval = util.get_xy_moving_average(
                intersacc_interval,
                self.NORMALIZATION_SLIDING_WINDOW_SIZE_SAMPLES,
                inplace=False)

            # for intervals shorter than @self.INTERSACCADIC_INTERVAL_DURATION_THRESHOLD_MICROSEC:
            # cannot do further filtering. The label remains 'UNKNOWN'
            if intersacc_interval['time'][-1] - intersacc_interval['time'][0] < \
                    self.INTERSACCADIC_INTERVAL_DURATION_THRESHOLD_MICROSEC:
                continue

            # for intervals that longer than self.SLIDING_WINDOW_WIDTH_MICROSEC: do further pre-filtering.
            # Label data as 'FIX' or 'NOISE', or keep 'UNKNOWN'
            else:
                # window is shifted by 1 sample every time
                for index, item in enumerate(intersacc_interval):
                    x_start = item['x']
                    y_start = item['y']
                    shift_window_interval = intersacc_interval[
                        (intersacc_interval['time'] >= item['time']) *
                        (intersacc_interval['time'] <=
                         item['time'] + self.SLIDING_WINDOW_WIDTH_MICROSEC)]

                    # if distance between current data and the end of interval is shorter than
                    # self.SLIDING_WINDOW_WIDTH_MICROSEC (i.e. if the end of the window matches the end of the
                    # intersaccadic interval), we keep the previous label if it was FIX, otherwise keep UNKNOWN
                    if shift_window_interval['time'][-1] == intersacc_interval[
                            'time'][-1]:
                        if intersacc_interval['EYE_MOVEMENT_TYPE'][index -
                                                                   1] == 'FIX':
                            gaze_points['data']['EYE_MOVEMENT_TYPE'][(
                                gaze_points['data']['time'] == item['time']
                            )] = 'FIX'

                            # we do not keep track of the non-fixation interval anymore since it will be all fixation
                            # until the end of the intersaccadic interval
                            onset_timestamp = None
                            onset_index = None
                        else:
                            # new non-fixation interval is starting
                            onset_timestamp = item['time']
                            onset_index = item['global_index']

                    # if distance between current data and the end of interval is larger than window size, continue
                    # with the process
                    else:
                        # get window duration in seconds
                        period = (shift_window_interval['time'][-1] -
                                  shift_window_interval['time'][0]) * 1e-6

                        # is the fixation criterion satisfied?
                        fixation_flag = True
                        if self.SLIDING_WINDOW_CRITERION == 'speed':
                            # if the current speed is larger than speed threshold --
                            # mark as onset(UNKNOWN, NOISE). else -- mark as offset(FIX)
                            x_end = shift_window_interval['x'][-1]
                            y_end = shift_window_interval['y'][-1]

                            if math.sqrt(
                                (x_start - x_end)**2 +
                                (y_start - y_end)**2) >= speed_thd * period:
                                # will not be a fixation
                                fixation_flag = False
                        else:  # spread
                            # if either x_max - x_min or y_max - y_min is larger than speed threshold * time --
                            # mark as onset. else -- mark as offset
                            x_max = max(shift_window_interval['x'])
                            x_min = min(shift_window_interval['x'])
                            y_max = max(shift_window_interval['y'])
                            y_min = min(shift_window_interval['y'])

                            if max(x_max - x_min,
                                   y_max - y_min) >= speed_thd * period:
                                # will not be a fixation
                                fixation_flag = False

                        if fixation_flag:
                            gaze_points['data']['EYE_MOVEMENT_TYPE'][
                                item['global_index']] = 'FIX'

                        # either a fixation start or the whole interval end
                        if fixation_flag or index == len(
                                intersacc_interval) - 1:
                            # if we had a non-fixation interval going on before, check it's duration
                            if onset_index is not None:
                                # onset episode larger than 50ms: UNKNOWN. else: NOISE
                                if item['time'] - onset_timestamp < self.MINIMAL_SP_DURATION_MICROSEC:
                                    offset_timestamp = item['time'] - 1
                                    offset_index = item['global_index'] - 1
                                    # if this is not the beginning of fixation,
                                    # the last item also should be labelled as NOISE
                                    if not fixation_flag:
                                        offset_timestamp += 1
                                        offset_index += 1

                                    gaze_points['data'][onset_index:(
                                        offset_index +
                                        1)]['EYE_MOVEMENT_TYPE'] = 'NOISE'

                                # episode is finished
                                onset_timestamp = None
                                onset_index = None
                        else:
                            # if new non-fixation interval started
                            if onset_timestamp is None:
                                onset_timestamp = item['time']
                                onset_index = item['global_index']
                            # otherwise it just continues, don't have to do anything
        # can now remove the global_index column
        gaze_points = ArffHelper.remove_column(gaze_points, 'global_index')
        return gaze_points