def recompute(recalculation_id=None, tenant=None): """ Script to execute recomputation :param recalculation_id: The id of the job to be recomputed :param tenant: tenants name """ # default paths fn_ar_cfg = "/etc/ar-compute-engine.conf" argo_exec = "/usr/libexec/ar-compute/bin" # Init configuration cfg = ArgoConfiguration(fn_ar_cfg) # Init logging log = init_log(cfg.log_mode, cfg.log_file, cfg.log_level, 'argo.recompute') # Check recomputation col = get_mongo_collection( cfg.mongo_host, cfg.mongo_port, "AR", "recalculations", log) recomputation = get_recomputation(col, recalculation_id, log) dates = get_time_period(recomputation) update_status(col, recalculation_id, "running", datetime.now(), log) loop_recompute(argo_exec, dates, tenant, cfg.jobs[tenant], log) update_status(col, recalculation_id, "done", datetime.now(), log)
def main(tenant=None): """ Checks if there are any pending recomputation requests and if the running requests do not exceed a threshold and queues another one to be recomputed :param tenant: :return: """ # default paths fn_ar_cfg = "/etc/ar-compute-engine.conf" argo_exec = "/usr/libexec/ar-compute/bin" arcomp_conf = "/etc/ar-compute" # Init configuration cfg = ArgoConfiguration(fn_ar_cfg) cfg.load_tenant_db_conf(os.path.join(arcomp_conf, args.tenant + "_db_conf.json")) threshold = cfg.threshold # Init logging log = init_log(cfg.log_mode, cfg.log_file, cfg.log_level, 'argo.recompute') db_name = cfg.get_mongo_database("ar") col = get_mongo_collection(cfg.mongo_host, cfg.mongo_port, db_name) num_pen, num_run = get_pending_and_running(col) log.info("Running recomputations: %s (threshold: %s)", num_run, threshold) try: run_recomputation(col, tenant, num_run, num_pen, threshold) log.info("Below threshold recomputation sent for execution") except ValueError as ex: log.info(ex)
def main(args=None): """ Script to retrieve relevant recomputations requests for a specific date :param args: Command line arguments """ # default paths fn_ar_cfg = "/etc/ar-compute-engine.conf" arcomp_conf = "/etc/ar-compute" # Init configuration cfg = ArgoConfiguration(fn_ar_cfg) cfg.load_tenant_db_conf(os.path.join(arcomp_conf, args.tenant + "_db_conf.json")) db_name = cfg.get_mongo_database("ar") col_recomputations = "recomputations" # Init logging log = init_log(cfg.log_mode, cfg.log_file, cfg.log_level, 'argo.mongo_recompute') # Get mongo collection col = get_mongo_collection(cfg.mongo_host, cfg.mongo_port, db_name, col_recomputations, log) results = get_mongo_results(col, args.date, args.job) log.info("Date: %s, relevant recomputations found: %s", args.date, len(results)) # Write results to file write_output(results, args.tenant, get_date_under(args.date), cfg.sync_path)
def get_poller_config(fn_ar_cfg="/etc/ar-compute-engine.conf", logging_config='logging', default_config='default'): """ Initialize the logger and retrieve the settings for the poller :param fn_ar_cfg: file from which to retrieve configuration :param logging_config: logging section of the configuration :param default_config: default section of the configuration :return: logger instance, mongo hostname, mongo port and threshold of running recomputations in a tuple """ # Read Configuration file ar_config = SafeConfigParser() ar_config.read(fn_ar_cfg) # Initialize logging log_mode = ar_config.get(logging_config, 'log_mode') log_file = ar_config.get(logging_config, 'log_file') if log_mode == 'file' else None log_level = ar_config.get(logging_config, 'log_level') log = init_log(log_mode, log_file, log_level, 'argo.poller') # Get mongo configurations mongo_host = ar_config.get(default_config, 'mongo_host') mongo_port = ar_config.get(default_config, 'mongo_port') threshold = int(ar_config.get(default_config, 'recomp_threshold')) log.info("Recomputation threshold: %s", threshold) return log, mongo_host, mongo_port, threshold
def main(args=None): # default config fn_ar_cfg = "/etc/ar-compute-engine.conf" arcomp_conf = "/etc/ar-compute/" # Init configuration cfg = utils.ArgoConfiguration(fn_ar_cfg) cfg.load_tenant_db_conf(os.path.join(arcomp_conf, args.tenant + "_db_conf.json")) # Init logging log = init_log(cfg.log_mode, cfg.log_file, cfg.log_level, 'argo.job_ar') # Split db.collection path strings to obtain database name and collection # name mongo_host = cfg.get_mongo_host("status") mongo_port = cfg.get_mongo_port("status") db_name = cfg.get_mongo_database("status") col_status = "status_metric" # Create a date integer for use in the database queries date_int = int(args.date.replace("-", "")) log.info("Connecting to mongo server: %s:%s", mongo_host, mongo_port) client = MongoClient(str(mongo_host), int(mongo_port)) log.info("Regarding service a/r data...") log.info("Opening database: %s", db_name) db = client[db_name] cols = ["status_metrics","status_endpoints","status_services","status_endpoint_groups"] # Iterate over collections for item in cols: log.info("Opening collection: %s", item) col = db[item] if args.report: num_of_rows = col.find({"date_integer": date_int, "report": args.report}).count() log.info("Found %s entries for date %s and report %s", num_of_rows, args.date, args.report) else: num_of_rows = col.find({"date_integer": date_int}).count() log.info("Found %s entries for date %s", num_of_rows, args.date) if num_of_rows > 0: if args.report: log.info( "Remove entries for date: %s and report: %s", args.date, args.report) col.delete_many({"date_integer": date_int, "report": args.report}) else: log.info("Remove entries for date: %s", args.date) col.delete_many({"date_integer": date_int}) log.info("Entries Removed!") else: log.info("Zero entries found. No need to remove anything")
def main(args=None): # default config fn_ar_cfg = "/etc/ar-compute-engine.conf" arcomp_conf = "/etc/ar-compute/" sdl_exec = "/usr/libexec/ar-compute/bin/" ArConfig = SafeConfigParser() ArConfig.read(fn_ar_cfg) # Initialize logging log_mode = ArConfig.get('logging', 'log_mode') log_file = None if log_mode == 'file': log_file = ArConfig.get('logging', 'log_file') # Set hadoop root logger settings os.environ["HADOOP_ROOT_LOGGER"] = ArConfig.get( 'logging', 'hadoop_log_root') log_level = ArConfig.get('logging', 'log_level') log = init_log(log_mode, log_file, log_level, 'argo.job_cycle') # Get the available tenants from config file tenant_list = ArConfig.get("jobs", "tenants") tenant_list = tenant_list.split(',') if args.tenant is not None: tenant_list = [args.tenant] # For each available tenant prepare and execute all tenant's jobs for tenant in tenant_list: # Get specific tenant's job set job_set = ArConfig.get("jobs", tenant + '_jobs') job_set = job_set.split(',') # Notify that he job cycle has begun log.info( "Job Cycle: started for tenant:%s and date: %s", tenant, args.date) # Command to upload the prefilter data cmd_upload_metric = [ os.path.join(sdl_exec, "upload_metric.py"), '-d', args.date, '-t', tenant] log.info("Job Cycle: Upload metric data to hdfs") run_cmd(cmd_upload_metric, log) log.info("Job Cycle: Iterate over jobs and submit them") # For each job genereate ar for job in job_set: log.info("Job Cycle: tenant %s has job named %s", tenant, job) cmd_job_ar = [os.path.join(sdl_exec, "job_ar.py"), '-d', args.date, '-t', tenant, '-j', job] run_cmd(cmd_job_ar, log) # Command to submit job status detail cmd_job_status = [os.path.join(sdl_exec, "job_status_detail.py"), '-d', args.date, '-t', tenant, '-j', job] run_cmd(cmd_job_status, log)
def main(args=None): # default config fn_ar_cfg = "/etc/ar-compute-engine.conf" date_under = args.date.replace("-", "_") ArConfig = SafeConfigParser() ArConfig.read(fn_ar_cfg) # Get sync exec and path arsync_exec = ArConfig.get('connectors', 'sync_exec') arsync_lib = ArConfig.get('connectors', 'sync_path') # Get mode from config file ar_mode = ArConfig.get('default', 'mode') prefilter_clean = ArConfig.get('default', 'prefilter_clean') # Initialize logging log_mode = ArConfig.get('logging', 'log_mode') log_file = None if log_mode == 'file': log_file = ArConfig.get('logging', 'log_file') log_level = ArConfig.get('logging', 'log_level') log = init_log(log_mode, log_file, log_level, 'argo.upload_metric') # Inform the user in wether argo runs locally or distributed if ar_mode == 'local': log.info("ARGO compute engine runs in LOCAL mode") log.info("metric data will be staged for computations locally") else: log.info("ARGO compute engine runs in CLUSTER mode") log.info("metric data will be uploaded to HDFS") # call prefilter if necessary for specified tenant if ArConfig.has_option('jobs', args.tenant + '_prefilter'): prefilter_exec = ArConfig.get('jobs', args.tenant + '_prefilter') cmd_pref = [os.path.join(arsync_exec, prefilter_exec), '-d', args.date] log.info("Calling %s for date: %s", os.path.join(arsync_exec, prefilter_exec), args.date) run_cmd(cmd_pref, log) fn_prefilter = "prefilter_" + date_under + ".avro" local_prefilter = os.path.join(arsync_lib, args.tenant, fn_prefilter) log.info("Check if produced %s exists: %s", local_prefilter, os.path.exists(local_prefilter)) # if prefilter not necessary, copy the orignal data file as a prefiltered result # so as to be picked up and transfered to hdfs else: fn_mdata = 'argo-consumer_log_' + args.date + '.avro' fn_prefilter = "prefilter_" + date_under + ".avro" local_mdata = os.path.join('/var/lib','argo-'+args.tenant.lower()+'-consumer',fn_mdata) local_prefilter = os.path.join(arsync_lib, args.tenant, fn_prefilter) cmd_copy = ['cp', local_mdata , local_prefilter ] run_cmd(cmd_copy,log) if ar_mode == 'cluster': # compose hdfs destination # hdfs path = ./tenant/mdata/... hdfs_path = "./" + args.tenant + "/mdata/" else: # compose local temporary destination hdfs_path = "/tmp/" + args.tenant + "/mdata/" # Command to establish tentant's metric data hdfs folder cmd_hdfs_mkdir = ['hadoop', 'fs', '-mkdir', '-p', hdfs_path] # Put file to hdfs destination cmd_hdfs = ['hadoop', 'fs', '-put', '-f', local_prefilter, hdfs_path] # Command to clear prefilter data after hdfs transfer cmd_clean = ['rm', '-f', local_prefilter] log.info("Establish if not present hdfs metric data directory") run_cmd(cmd_hdfs_mkdir, log) log.info("Transfer files to hdfs") run_cmd(cmd_hdfs, log) if prefilter_clean == "true": log.info("System configured to clean prefilter data after transfer") run_cmd(cmd_clean, log) log.info("Metric Data of tenant %s for date %s uploaded successfully to hdfs", args.tenant, args.date)
def main(args=None): # default paths fn_ar_cfg = "/etc/ar-compute-engine.conf" arcomp_conf = "/etc/ar-compute/" arcomp_exec = "/usr/libexec/ar-compute/" stdl_exec = "/usr/libexec/ar-compute/bin" pig_script_path = "/usr/libexec/ar-compute/pig/" one_day_ago = utils.get_actual_date(args.date) - timedelta(days=1) prev_date = utils.get_date_str(one_day_ago) prev_date_under = utils.get_date_under(prev_date) date_under = utils.get_date_under(args.date) # Init configuration cfg = utils.ArgoConfiguration(fn_ar_cfg) cfg.load_tenant_db_conf(os.path.join(arcomp_conf, args.tenant + "_db_conf.json")) # Init logging log = init_log(cfg.log_mode, cfg.log_file, cfg.log_level, 'argo.job_status_detail') local_cfg_path = arcomp_conf # open job configuration file json_cfg_file = open( local_cfg_path + args.tenant + "_" + args.job + "_cfg.json") json_cfg = json.load(json_cfg_file) # Inform the user in wether argo runs locally or distributed if cfg.mode == 'local': log.info("ARGO compute engine runs in LOCAL mode") log.info("computation job will be run locally") else: log.info("ARGO compute engine runs in CLUSTER mode") log.info("computation job will be submitted to the hadoop cluster") # Proposed hdfs pathways hdfs_mdata_path = './' + args.tenant + "/mdata/" hdfs_sync_path = './scratch/sync/' + args.tenant + \ "/" + args.job + "/" + date_under + "/" # Proposed local pathways local_mdata_path = '/tmp/' + args.tenant + "/mdata/" local_sync_path = '/tmp/scratch/sync/' + args.tenant + \ '/' + args.job + '/' + date_under + '/' local_cfg_path = arcomp_conf if cfg.mode == 'cluster': mode = 'cache' mdata_path = hdfs_mdata_path sync_path = hdfs_sync_path cfg_path = hdfs_sync_path else: mode = 'local' mdata_path = local_mdata_path sync_path = local_sync_path cfg_path = local_cfg_path # dictionary with necessary pig parameters pig_params = {} pig_params['mdata'] = mdata_path + 'prefilter_' + date_under + '.avro' pig_params['p_mdata'] = mdata_path + \ 'prefilter_' + prev_date_under + '.avro' pig_params['egs'] = sync_path + 'group_endpoints.avro' pig_params['ggs'] = sync_path + 'group_groups.avro' pig_params['mps'] = sync_path + 'poem_sync.avro' pig_params['cfg'] = cfg_path + args.tenant + '_' + args.job + '_cfg.json' pig_params['aps'] = cfg_path + args.tenant + '_' + args.job + '_ap.json' pig_params['rec'] = cfg_path + 'recomputations_' + args.tenant + '_' + date_under + '.json' pig_params['ops'] = cfg_path + args.tenant + '_ops.json' pig_params['dt'] = args.date pig_params['mode'] = mode pig_params['flt'] = '1' pig_params['mongo_status_metrics'] = cfg.get_mongo_uri('status', 'status_metrics') pig_params['mongo_status_endpoints'] = cfg.get_mongo_uri('status', 'status_endpoints') pig_params['mongo_status_services'] = cfg.get_mongo_uri('status', 'status_services') pig_params['mongo_status_endpoint_groups'] = cfg.get_mongo_uri('status', 'status_endpoint_groups') cmd_pig = [] # Append pig command cmd_pig.append('pig') # Append Pig local execution mode flag if cfg.mode == "local": cmd_pig.append('-x') cmd_pig.append('local') # Append Pig Parameters for item in pig_params: cmd_pig.append('-param') cmd_pig.append(item + '=' + pig_params[item]) # Append Pig Executionable Script cmd_pig.append('-f') cmd_pig.append(pig_script_path + 'compute-status.pig') # Command to clean a/r data from mongo cmd_clean_mongo_status = [ os.path.join(stdl_exec, "mongo_clean_status.py"), '-d', args.date, '-t', args.tenant, '-r', json_cfg['id']] # Command to upload sync data to hdfs cmd_upload_sync = [os.path.join( stdl_exec, "upload_sync.py"), '-d', args.date, '-t', args.tenant, '-j', args.job] # Command to clean hdfs data cmd_clean_sync = ['hadoop', 'fs', '-rm', '-r', '-f', hdfs_sync_path] # Upload data to hdfs log.info("Uploading sync data to hdfs...") run_cmd(cmd_upload_sync, log) # Clean data from mongo log.info("Cleaning data from mongodb") run_cmd(cmd_clean_mongo_status, log) # Call pig log.info("Submitting pig compute status detail job...") run_cmd(cmd_pig, log) # Cleaning hdfs sync data if cfg.sync_clean == "true": log.info("System configured to clean sync hdfs data after job") run_cmd(cmd_clean_sync, log) log.info("Execution of status job for tenant %s for date %s completed!", args.tenant, args.date)
def main(args=None): # default config fn_ar_cfg = "/etc/ar-compute-engine.conf" date_under = args.date.replace("-", "_") ArConfig = SafeConfigParser() ArConfig.read(fn_ar_cfg) # Get sync exec and path arsync_exec = ArConfig.get('connectors', 'sync_exec') arsync_lib = ArConfig.get('connectors', 'sync_path') # Get mode from config file ar_mode = ArConfig.get('default', 'mode') prefilter_clean = ArConfig.get('default', 'prefilter_clean') # Initialize logging log_mode = ArConfig.get('logging', 'log_mode') log_file = None if log_mode == 'file': log_file = ArConfig.get('logging', 'log_file') log_level = ArConfig.get('logging', 'log_level') log = init_log(log_mode, log_file, log_level, 'argo.upload_metric') # Inform the user in wether argo runs locally or distributed if ar_mode == 'local': log.info("ARGO compute engine runs in LOCAL mode") log.info("metric data will be staged for computations locally") else: log.info("ARGO compute engine runs in CLUSTER mode") log.info("metric data will be uploaded to HDFS") # call prefilter if necessary for specified tenant # FIXME: This conditional won't work if a prefilter wrapper is missing. # DETAILS: If a prefilter wrapper is not provided then the # local_prefilter variable will not be initialized. Note, however, that # this variable is used below and outside of this conditional. if ArConfig.has_option('jobs', args.tenant + '_prefilter'): prefilter_exec = ArConfig.get('jobs', args.tenant + '_prefilter') cmd_pref = [os.path.join(arsync_exec, prefilter_exec), '-d', args.date] log.info("Calling %s for date: %s", os.path.join(arsync_exec, prefilter_exec), args.date) run_cmd(cmd_pref, log) fn_prefilter = "prefilter_" + date_under + ".avro" local_prefilter = os.path.join(arsync_lib, args.tenant, fn_prefilter) log.info("Check if produced %s exists: %s", local_prefilter, os.path.exists(local_prefilter)) if ar_mode == 'cluster': # compose hdfs destination # hdfs path = ./tenant/mdata/... hdfs_path = "./" + args.tenant + "/mdata/" else: # compose local temporary destination hdfs_path = "/tmp/" + args.tenant + "/mdata/" # Command to establish tentant's metric data hdfs folder cmd_hdfs_mkdir = ['hadoop', 'fs', '-mkdir', '-p', hdfs_path] # Put file to hdfs destination cmd_hdfs = ['hadoop', 'fs', '-put', '-f', local_prefilter, hdfs_path] # Command to clear prefilter data after hdfs transfer cmd_clean = ['rm', '-f', local_prefilter] log.info("Establish if not present hdfs metric data directory") run_cmd(cmd_hdfs_mkdir, log) log.info("Transfer files to hdfs") run_cmd(cmd_hdfs, log) if prefilter_clean == "true": log.info("System configured to clean prefilter data after transfer") run_cmd(cmd_clean, log) log.info("Metric Data of tenant %s for date %s uploaded successfully to hdfs", args.tenant, args.date)
def test_init_log_raise_on_none_filename(): with pytest.raises(TypeError) as excinfo: init_log(log_mode='file', log_file=None, log_level='INFO', log_name='argo.test') assert "Log filename is NoneType" in str(excinfo.value)
def main(args=None): # default config fn_ar_cfg = "/etc/ar-compute-engine.conf" arcomp_conf = "/etc/ar-compute/" arcomp_exec = "/usr/libexec/ar-compute/" stdl_exec = "/usr/libexec/ar-compute/bin" ArConfig = SafeConfigParser() ArConfig.read(fn_ar_cfg) # Get sync path arsync_lib = ArConfig.get('connectors', 'sync_path') # Initialize logging log_mode = ArConfig.get('logging', 'log_mode') log_file = None if log_mode == 'file': log_file = ArConfig.get('logging', 'log_file') log_level = ArConfig.get('logging', 'log_level') log = init_log(log_mode, log_file, log_level, 'argo.sync_backup') # Parse date argument actual_date = datetime.strptime(args.date, '%Y-%m-%d') # Set day on the first of the month actual_date = actual_date.replace(day=1) # First day of the month minus one day gets us back one month ago (or even # year ago) month_ago = actual_date - timedelta(days=1) fn_sync_tar = 'sync_backup_' + args.tenant + '_' + \ str(month_ago.strftime("%B")) + '_' + str(month_ago.year) + '.tar' local_tar = os.path.join('/tmp', fn_sync_tar) # Check if tar file already exists from a previous backup try and remove it if os.path.exists(local_tar): os.remove(local_tar) sync_tar = tarfile.open(local_tar, mode='w') # Grab all available jobs in the system job_set = ArConfig.get("jobs", args.tenant+"_jobs") job_set = job_set.split(',') # Create query strings to list appropriate files query_down = '*_' + \ month_ago.strftime("%Y") + "_" + month_ago.strftime("%m") + '_*.avro' query_dash = '*_' + \ month_ago.strftime("%Y") + "-" + month_ago.strftime("%m") + '-*.avro' # Downtimes are special because they always reside in the ar-sync root # (might change in the future) downtime_list = glob.glob(os.path.join(arsync_lib, query_dash)) # Add downtimes to the tar file log.info("Adding downtime files for %s of %s", month_ago.strftime("%B"), month_ago.year) for f in downtime_list: tar_path = args.tenant + '/' + os.path.basename(f) sync_tar.add(f, tar_path) # Iterate over job folders for item in job_set: jobsync_list = glob.glob( os.path.join(arsync_lib, args.tenant, item, query_down)) log.info("adding sync files for %s of %s for Job: %s", month_ago.strftime("%B"), month_ago.year, item) for f in jobsync_list: tar_path = args.tenant + '/' + item + '/' + os.path.basename(f) sync_tar.add(f, tar_path) sync_tar.close() # Create HDFS backup path hdfs_dest = args.tenant + '/backup/sync/' cmd_establish_hdfs = ['hadoop', 'fs', '-mkdir', '-p', hdfs_dest] log.info("Establish hdfs backup directory: %s", hdfs_dest) run_cmd(cmd_establish_hdfs, log) # Transfer tar archive to hdfs cmd_hdfs_put = ['hadoop', 'fs', '-put', '-f', local_tar, hdfs_dest] log.info("Transfer backup from local:%s to hdfs:%s", local_tar, hdfs_dest) run_cmd(cmd_hdfs_put, log) # Clean up temporary tar log.info("Cleanup tmp data") if os.path.exists(local_tar): os.remove(local_tar) log.info("Backup Completed to hdfs")
def main(args=None): # Default core paths fn_ar_cfg = "/etc/ar-compute-engine.conf" arcomp_conf = "/etc/ar-compute/" argo_exec = "/usr/libexec/ar-compute/bin/" actual_date = datetime.strptime(args.date, '%Y-%m-%d') # Create a second date used by the file formats date_under = args.date.replace("-", "_") # Initiate config file parser to read global ar-compute-engine.conf ArConfig = SafeConfigParser() ArConfig.read(fn_ar_cfg) # Get sync conf, exec and path arsync_conf = ArConfig.get('connectors', 'sync_conf') arsync_exec = ArConfig.get('connectors', 'sync_exec') arsync_lib = ArConfig.get('connectors', 'sync_path') # Initialize logging log_mode = ArConfig.get('logging', 'log_mode') log_file = None if log_mode == 'file': log_file = ArConfig.get('logging', 'log_file') log_level = ArConfig.get('logging', 'log_level') log = init_log(log_mode, log_file, log_level, 'argo.upload_sync') # Get mode from config file ar_mode = ArConfig.get('default', 'mode') # Inform the user in wether argo runs locally or distributed if ar_mode == 'local': log.info("ARGO compute engine runs in LOCAL mode") log.info("sync data will be staged for computations locally") else: log.info("ARGO compute engine runs in CLUSTER mode") log.info("sync data will be uploaded to HDFS") # Compose needed sync filenames using the correct prefixes, dates and file # extensions (avro/json) fn_ops = args.tenant + '_ops.json' fn_aps = args.tenant + '_' + args.job + '_ap.json' fn_cfg = args.tenant + '_' + args.job + '_cfg.json' fn_rec = "recomputations_" + args.tenant + "_" + date_under + ".json" if ar_mode == 'cluster': # compose hdfs temporary destination # hdfs dest = ./scratch/sync/tenant/job/date/... # sync files are not meant to be kept in hdfs (unless archived in # batches) hdfs_dest = './scratch/sync/' + args.tenant + \ '/' + args.job + '/' + date_under + '/' else: # compose local temporary destination hdfs_dest = '/tmp/scratch/sync/' + args.tenant + \ '/' + args.job + '/' + date_under + '/' # Compose the local ar-sync files job folder # arsync job = /path/to/synced_stuff/tenant/job/... arsync_job = arsync_lib + '/' + args.tenant + '/' + args.job + '/' # Call downtimes latest info cmd_call_downtimes = [ os.path.join(arsync_exec, 'downtimes-gocdb-connector.py'), '-d', args.date, '-c', os.path.join(arsync_conf, args.tenant.lower() + '-customer.conf')] log.info("Calling downtime sync connector to give us latest downtime info") run_cmd(cmd_call_downtimes, log) # Call script to retrieve a json file of recomputations for the specific date/tenant from mongodb cmd_mongo_recomputations = [os.path.join(argo_exec, 'mongo_recompute.py'), '-d', args.date, '-t', args.tenant, '-j', args.job] log.info("Retrieving relevant recomputation requests...") run_cmd(cmd_mongo_recomputations, log) # Compose the local paths for files (paths+filenames) local_egroups = getSyncFile( actual_date, os.path.join(arsync_job, "group_endpoints_"), '.avro', '_', log) local_ggroups = getSyncFile( actual_date, os.path.join(arsync_job, "group_groups_"), '.avro', '_', log) local_weights = getSyncFile( actual_date, os.path.join(arsync_job, "weights_"), '.avro', '_', log) local_mps = getSyncFile( actual_date, os.path.join(arsync_job, "poem_sync_"), '.avro', '_', log) local_downtimes = getSyncFile( actual_date, os.path.join(arsync_job, "downtimes_"), '.avro', '_', log) local_aps = os.path.join(arcomp_conf, fn_aps) local_ops = os.path.join(arcomp_conf, fn_ops) local_cfg = os.path.join(arcomp_conf, fn_cfg) local_rec = os.path.join(arsync_lib, fn_rec) # Check filenames if exist log.info("Check if %s exists: %s", local_aps, os.path.exists(local_aps)) log.info("Check if %s exists: %s", local_ops, os.path.exists(local_ops)) log.info("Check if %s exists: %s", local_cfg, os.path.exists(local_cfg)) log.info("Check if %s exists: %s", local_rec, os.path.exists(local_rec)) # Remove scratch sync directory in hdfs (cause we don't keep unarchived # sync files) cmd_clearHdfs = ['hadoop', 'fs', '-rm', '-r', '-f', hdfs_dest] # Establish new scratch sync directory in hdfs for this job cmd_estHdfs = ['hadoop', 'fs', '-mkdir', '-p', hdfs_dest] # Transfer endpoint groups topo from local to hdfs cmd_putEgroups = ['hadoop', 'fs', '-put', '-f', local_egroups, hdfs_dest + 'group_endpoints.avro'] # Transfer group of groups topo from local to hdfs cmd_putGgroups = ['hadoop', 'fs', '-put', '-f', local_ggroups, hdfs_dest + 'group_groups.avro'] # Transfer weight factors from local to hdfs cmd_putWeights = ['hadoop', 'fs', '-put', '-f', local_weights, hdfs_dest + 'weights.avro'] # Transfer metric profile from local to hdfs cmd_putMps = ['hadoop', 'fs', '-put', '-f', local_mps, hdfs_dest + 'poem_sync.avro'] # Transfer downtime info from local to hdfs cmd_putDowntimes = ['hadoop', 'fs', '-put', '-f', local_downtimes, hdfs_dest + 'downtimes.avro'] # Transfer availability profile from local to hdfs cmd_putAps = ['hadoop', 'fs', '-put', '-f', local_aps, hdfs_dest] # Transfer operations from local to hdfs cmd_putOps = ['hadoop', 'fs', '-put', '-f', local_ops, hdfs_dest] # Transfer job configuration file from local to hdfs cmd_putCfg = ['hadoop', 'fs', '-put', '-f', local_cfg, hdfs_dest] # Transfer recalculations requests (if any) from local to hdfs cmd_putRec = ['hadoop', 'fs', '-put', '-f', local_rec, hdfs_dest] # try: log.info("Remove old scratch sync folder: %s", hdfs_dest) run_cmd(cmd_clearHdfs, log) log.info("Establish new scratch sync folder %s", hdfs_dest) run_cmd(cmd_estHdfs, log) log.info("Transfer metric profile") run_cmd(cmd_putMps, log) log.info("Transfer endpoint group topology") run_cmd(cmd_putEgroups, log) log.info("Transfer group of group topology") run_cmd(cmd_putGgroups, log) log.info("Transfer weight factors") run_cmd(cmd_putWeights, log) log.info("Transfer downtimes") run_cmd(cmd_putDowntimes, log) log.info("Transfer availability profile") run_cmd(cmd_putAps, log) log.info("Transfer operations file") run_cmd(cmd_putOps, log) log.info("Transfer job configuration") run_cmd(cmd_putCfg, log) log.info("Transfer recalculation requests") run_cmd(cmd_putRec, log) # Clear local temporary recomputation file os.remove(local_rec) log.info("Sync Data of tenant %s for job %s for date %s uploaded successfully to hdfs", args.tenant, args.job, args.date)