# you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from args import image_net_arg, brats_arg, image_retrieval_arg DATA_SEQUENCES = { 'action-recognition': [ image_net_arg('00000001'), image_net_arg('00000002'), image_net_arg('00000003'), image_net_arg('00000004'), image_net_arg('00000005'), image_net_arg('00000006'), image_net_arg('00000007'), image_net_arg('00000008'), image_net_arg('00000009'), image_net_arg('00000010'), image_net_arg('00000011'), image_net_arg('00000012'), image_net_arg('00000013'), image_net_arg('00000014'), image_net_arg('00000015'), image_net_arg('00000016'),
# you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from args import image_net_arg IMAGE_SEQUENCES = { 'face-detection-adas': [ image_net_arg('00000002'), image_net_arg('00000032'), image_net_arg('00000184'), image_net_arg('00000442'), image_net_arg('00008165'), image_net_arg('00008170'), image_net_arg('00008172'), image_net_arg('00040548'), image_net_arg('00040557'), image_net_arg('00045630'), ], 'gaze-estimation-adas': [ image_net_arg('00008165'), image_net_arg('00008170'), image_net_arg('00012803'), image_net_arg('00018801'),
'-v': ModelFileArg('bert-base-ner', 'bert-base-ner/vocab.txt') }), )), PythonDemo(name='colorization_demo', device_keys=['-d'], test_cases=combine_cases( TestCase(options={ '--no_show': None, **MONITORS, '-i': DataPatternArg('classification'), '-m': ModelArg('colorization-v2'), }) )), PythonDemo(name='face_detection_mtcnn_demo', device_keys=['-d'], test_cases=combine_cases( TestCase(options={'--no_show': None, '-i': image_net_arg('00000002'), '-m_p': ModelArg('mtcnn-p'), '-m_r': ModelArg('mtcnn-r'), '-m_o': ModelArg('mtcnn-o')}), )), PythonDemo(name='face_recognition_demo', device_keys=['-d_fd', '-d_lm', '-d_reid'], test_cases=combine_cases( TestCase(options={'--no_show': None, **MONITORS, '-i': DataPatternArg('face-detection-adas'), '-fg': DataDirectoryArg('face-recognition-gallery') }), single_option_cases('-m_fd', ModelArg('face-detection-adas-0001'), ModelArg('face-detection-retail-0004'),
device_keys=['-d'], test_cases=combine_cases( TestCase( options={ '--no_show': None, **MONITORS, '-i': DataPatternArg('classification'), '-m': ModelArg('colorization-v2'), }))), PythonDemo(name='face_detection_mtcnn_demo', device_keys=['-d'], test_cases=combine_cases( TestCase( options={ '--no_show': None, '-i': image_net_arg('00000002'), '-m_p': ModelArg('mtcnn-p'), '-m_r': ModelArg('mtcnn-r'), '-m_o': ModelArg('mtcnn-o') }), )), PythonDemo( name='gesture_recognition_demo', device_keys=['-d'], test_cases=combine_cases( TestCase( options={ '--no_show': None, '-i': TestDataArg( 'msasl/global_crops/_nz_sivss20/clip_0017/img_%05d.jpg'