from clusterers.expectation_maximization import ExpectationMaximization from clusterers.k_means import Kmeans from clusterers.Optic_Clustering import optics from sklearn.metrics import calinski_harabasz_score, davies_bouldin_score, silhouette_score from utils import clear, load_dataset, factorize from gap import optimalK from sklearn.cluster import KMeans argument_parser = ArgumentParser() setup = { "dataset": argument_parser.get_dataset_path(), "dataset_name": argument_parser.get_dataset_name(), "simple_name": argument_parser.get_simple_dataset_name(), "algorithm": argument_parser.get_algorithm(), "clusters": argument_parser.get_number_of_clusters(), "class_args": argument_parser.get_classifier_arguments() } if argument_parser.is_n_clusters_fixed() is True: setup['clusters'] = argument_parser.get_fixed_n_clusters() data = load_dataset(setup['dataset']) data = data.apply(factorize) if argument_parser.is_elbow_method_run() is False: algorithm = None if setup['algorithm'] == 1: algorithm = ExpectationMaximization(data, setup['clusters'], setup['class_args']) elif setup['algorithm'] == 2:
from classifiers.bayes import Bayes from classifiers.neural_network import NeuralNetwork from classifiers.knn import KNN from classifiers.svm import SVM from util import * argument_parser = ArgumentParser() filename = argument_parser.get_filename() adwin_delta = argument_parser.get_delta() training_set_ratio = argument_parser.get_training_set_ratio() neighbors_number = argument_parser.get_neighbors_number() kernel = argument_parser.get_kernel() regulation = argument_parser.get_regulation() max_iters = argument_parser.get_iterations() n_of_hidden = argument_parser.get_n_of_hidden_layers() algorithm = argument_parser.get_algorithm() printing = argument_parser.is_printing() data, labels = load_data(filename) classifiers = { 'bayes': Bayes(data, labels, training_set_ratio), 'knn': KNN(data, labels, training_set_ratio, neighbors_number), 'nn': NeuralNetwork(data, labels, training_set_ratio, n_of_hidden, max_iters), 'svm': SVM(data, labels, training_set_ratio, kernel, regulation) } classifier = classifiers[algorithm] classifier.train()
import numpy from matplotlib import pyplot from platypus import ZDT1, ZDT2, ZDT3, ZDT4, ZDT5, ZDT6 from platypus.algorithms import NSGAII, IBEA, SPEA2, GDE3 from platypus.operators import UniformMutation from platypus.core import nondominated from pymoo.factory import get_problem, get_performance_indicator from scipy.interpolate import interp1d from sklearn.metrics import mean_squared_error from utils import clear from argument_parser import ArgumentParser args = ArgumentParser() algorithm_name = args.get_algorithm() population_size = args.get_population() problem_name = args.get_problem() clear() variator = UniformMutation(probability=args.get_probability(), perturbation=0.5) problem = { 'zdt1': ZDT1(), 'zdt2': ZDT2(), 'zdt3': ZDT3(), 'zdt4': ZDT4(), }[problem_name]