示例#1
0
    np.random.seed(0)  # determinism

    fn = os.path.join(settings['data-base'], 'positions.csv')
    reader = csv.reader(open(fn), dialect='unix')
    reader.__next__()  # skip headers

    print("preparing to read data...")
    # nolines = 3977256
    nolines = 1800000
    # nolines = 30000
    feats = []
    labels = []
    print("reading data...")
    for i, row in enumerate(reader):
        feats.extend(featdecode(row[4]))
        labels.append([lint(row[3])])
        if i + 1 >= nolines:
            break
        if i % 100000 == 0:
            print(i)

    print("reshaping data...")
    samples = len(feats) // 384

    X_all = np.array(feats).reshape((samples, 6, 8, 8))
    y_all = np.array(labels)

    ##################################################################################

    for (dropout_rate, regularize, learning_rule), kernel_shape in \
示例#2
0
    print("loading model...")
    fn = os.path.join(settings['data-base'], 'nn.pickle')
    mlp = pickle.load(open(fn, 'rb'))

    fn = os.path.join(settings['data-base'], 'positions.csv')
    reader = csv.reader(open(fn), dialect='unix')
    reader.__next__()  # skip headers

    print("preparing to read data...")
    nolines = 3977256
    # nolines = 1000
    feats = collections.defaultdict(list)
    labels = collections.defaultdict(list)
    print("reading data...")
    for h, row in enumerate(reader):
        feats[int(row[2])].extend(featdecode(row[4]))
        labels[int(row[2])].append([lint(row[3])])
        if h + 1 >= nolines:
            break
        if h % 100000 == 0:
            print(h)

    print("reshaping data...")
    Xs = dict()
    ys = dict()
    for h in feats:
        samples = len(feats[h]) // 384
        Xs[h] = np.array(feats[h]).reshape((samples, 6, 8, 8))
        ys[h] = np.array(labels[h])

    mse_scores = dict()
示例#3
0
        learning_rule='nesterov',
        verbose=True
    )

    fn = os.path.join(settings['data-base'], 'positions.csv')
    reader = csv.reader(open(fn), dialect='unix')
    reader.__next__()  # skip headers

    print("preparing to read data...")
    nolines = 3977256
    # nolines = 400000
    feats = []
    labels = []
    print("reading data...")
    for i, row in enumerate(reader):
        feats.extend(featdecode(row[4]))
        labels.append([lint(row[3])])
        if i + 1 >= nolines:
            break
        if i % 100000 == 0:
            print(i)

    print("reshaping data...")
    samples = len(feats) // 384

    X = np.array(feats).reshape((samples, 6, 8, 8))
    y = np.array(labels)

    print("shuffling data...")
    examples = list(zip(X, y))
    X, y = list(zip(*examples))