示例#1
0
def linspace(start: Union[float, np.float64, int, np.int64],
             stop: Union[float, np.float64, int,
                         np.int64], length: Union[int, np.int64]) -> pdarray:
    """
    Create a pdarray of linearly-spaced floats in a closed interval.

    Parameters
    ----------
    start : Union[float,np.float64, int, np.int64]
        Start of interval (inclusive)
    stop : Union[float,np.float64, int, np.int64]
        End of interval (inclusive)
    length : Union[int,np.int64]
        Number of points

    Returns
    -------
    pdarray, float64
        Array of evenly spaced float values along the interval
        
    Raises
    ------
    TypeError
        Raised if start or stop is not a float or int or if length is not an int

    See Also
    --------
    arange
    
    Notes
    -----
    If that start is greater than stop, the pdarray values are generated
    in descending order.

    Examples
    --------
    >>> ak.linspace(0, 1, 5)
    array([0, 0.25, 0.5, 0.75, 1])

    >>> ak.linspace(start=1, stop=0, length=5)
    array([1, 0.75, 0.5, 0.25, 0])

    >>> ak.linspace(start=-5, stop=0, length=5)
    array([-5, -3.75, -2.5, -1.25, 0])
    """
    if not isSupportedNumber(start) or not isSupportedNumber(stop):
        raise TypeError(
            'both start and stop must be an int, np.int64, float, or np.float64'
        )
    if not isSupportedNumber(length):
        raise TypeError('length must be an int or int64')
    repMsg = generic_msg(cmd='linspace',
                         args="{} {} {}".format(start, stop, length))
    return create_pdarray(repMsg)
示例#2
0
def where(condition: pdarray, A: Union[numeric_scalars, pdarray],
          B: Union[numeric_scalars, pdarray]) -> pdarray:
    """
    Returns an array with elements chosen from A and B based upon a 
    conditioning array. As is the case with numpy.where, the return array
    consists of values from the first array (A) where the conditioning array 
    elements are True and from the second array (B) where the conditioning
    array elements are False.
    
    Parameters
    ----------
    condition : pdarray
        Used to choose values from A or B
    A : Union[numeric_scalars, pdarray]
        Value(s) used when condition is True
    B : Union[numeric_scalars, pdarray]
        Value(s) used when condition is False

    Returns
    -------
    pdarray
        Values chosen from A where the condition is True and B where
        the condition is False
        
    Raises 
    ------
    TypeError
        Raised if the condition object is not a pdarray, if A or B is not
        an int, np.int64, float, np.float64, or pdarray, if pdarray dtypes 
        are not supported or do not match, or multiple condition clauses (see 
        Notes section) are applied
    ValueError
        Raised if the shapes of the condition, A, and B pdarrays are unequal
        
    Examples
    --------
    >>> a1 = ak.arange(1,10)
    >>> a2 = ak.ones(9, dtype=np.int64)
    >>> cond = a1 < 5
    >>> ak.where(cond,a1,a2)
    array([1, 2, 3, 4, 1, 1, 1, 1, 1])
    
    >>> a1 = ak.arange(1,10)
    >>> a2 = ak.ones(9, dtype=np.int64)
    >>> cond = a1 == 5
    >>> ak.where(cond,a1,a2)
    array([1, 1, 1, 1, 5, 1, 1, 1, 1])

    >>> a1 = ak.arange(1,10)
    >>> a2 = 10
    >>> cond = a1 < 5
    >>> ak.where(cond,a1,a2)
    array([1, 2, 3, 4, 10, 10, 10, 10, 10])

    Notes
    -----
    A and B must have the same dtype and only one conditional clause 
    is supported e.g., n < 5, n > 1, which is supported in numpy
    is not currently supported in Arkouda
    """
    if (not isSupportedNumber(A) and not isinstance(A,pdarray)) or \
                                      (not isSupportedNumber(B) and not isinstance(B,pdarray)):
        raise TypeError(
            'both A and B must be an int, np.int64, float, np.float64, or pdarray'
        )
    if isinstance(A, pdarray) and isinstance(B, pdarray):
        repMsg = generic_msg(cmd="efunc3vv", args="{} {} {} {}".\
                             format("where",
                                    condition.name,
                                    A.name,
                                    B.name))
    # For scalars, try to convert it to the array's dtype
    elif isinstance(A, pdarray) and np.isscalar(B):
        repMsg = generic_msg(cmd="efunc3vs", args="{} {} {} {} {}".\
                             format("where",
                                    condition.name,
                                    A.name,
                                    A.dtype.name,
                                    A.format_other(B)))
    elif isinstance(B, pdarray) and np.isscalar(A):
        repMsg = generic_msg(cmd="efunc3sv", args="{} {} {} {} {}".\
                             format("where",
                                    condition.name,
                                    B.dtype.name,
                                    B.format_other(A),
                                    B.name))
    elif np.isscalar(A) and np.isscalar(B):
        # Scalars must share a common dtype (or be cast)
        dtA = resolve_scalar_dtype(A)
        dtB = resolve_scalar_dtype(B)
        # Make sure at least one of the dtypes is supported
        if not (dtA in DTypes or dtB in DTypes):
            raise TypeError(
                ("Not implemented for scalar types {} " + "and {}").format(
                    dtA, dtB))
        # If the dtypes are the same, do not cast
        if dtA == dtB:  # type: ignore
            dt = dtA
        # If the dtypes are different, try casting one direction then the other
        elif dtB in DTypes and np.can_cast(A, dtB):
            A = np.dtype(dtB).type(A)
            dt = dtB
        elif dtA in DTypes and np.can_cast(B, dtA):
            B = np.dtype(dtA).type(B)
            dt = dtA
        # Cannot safely cast
        else:
            raise TypeError(("Cannot cast between scalars {} and {} to " +
                             "supported dtype").format(A, B))
        repMsg = generic_msg(cmd="efunc3ss", args="{} {} {} {} {} {}".\
                             format("where",
                                    condition.name,
                                    dt,
                                    A,
                                    dt,
                                    B))
    return create_pdarray(type_cast(str, repMsg))
示例#3
0
def random_strings_lognormal(logmean : numeric_scalars, logstd : numeric_scalars, 
            size : int_scalars, characters : str='uppercase', 
                             seed : Optional[int_scalars]=None) -> Strings:
    """
    Generate random strings with log-normally distributed lengths and 
    with characters drawn from a specified set.

    Parameters
    ----------
    logmean : numeric_scalars
        The log-mean of the length distribution
    logstd :  numeric_scalars
        The log-standard-deviation of the length distribution
    size : int_scalars
        The number of strings to generate
    characters : (uppercase, lowercase, numeric, printable, binary)
        The set of characters to draw from
    seed : int_scalars, optional
        Value used to initialize the random number generator

    Returns
    -------
    Strings
        The Strings object encapsulating a pdarray of random strings
    
    Raises
    ------
    TypeError
        Raised if logmean is neither a float nor a int, logstd is not a float, 
        size is not an int, or if characters is not a str
    ValueError
        Raised if logstd <= 0 or size < 0

    See Also
    --------
    random_strings_lognormal, randint

    Notes
    -----
    The lengths of the generated strings are distributed $Lognormal(\\mu, \\sigma^2)$,
    with :math:`\\mu = logmean` and :math:`\\sigma = logstd`. Thus, the strings will
    have an average length of :math:`exp(\\mu + 0.5*\\sigma^2)`, a minimum length of 
    zero, and a heavy tail towards longer strings.
    
    Examples
    --------
    >>> ak.random_strings_lognormal(2, 0.25, 5, seed=1)
    array(['TVKJTE', 'ABOCORHFM', 'LUDMMGTB', 'KWOQNPHZ', 'VSXRRL'])
    
    >>> ak.random_strings_lognormal(2, 0.25, 5, seed=1, characters='printable')
    array(['+5"fp-', ']3Q4kC~HF', '=F=`,IE!', 'DjkBa'9(', '5oZ1)='])
    """
    if not isSupportedNumber(logmean) or not isSupportedNumber(logstd):
        raise TypeError('both logmean and logstd must be an int, np.int64, float, or np.float64')
    if logstd <= 0 or size < 0:
        raise ValueError("Incompatible arguments: logstd <= 0 or size < 0")

    repMsg = generic_msg(cmd="randomStrings", args="{} {} {} {} {} {}".\
          format(NUMBER_FORMAT_STRINGS['int64'].format(size),
                 "lognormal", characters,
                 NUMBER_FORMAT_STRINGS['float64'].format(logmean),
                 NUMBER_FORMAT_STRINGS['float64'].format(logstd),
                 seed))
    return Strings(*(cast(str,repMsg).split('+')))