示例#1
0
def qa_image(im, mask=None, context="") -> QA:
    """Assess the quality of an image

    :param params:
    :param im:
    :return: QA
    """
    assert isinstance(im, Image)
    if mask is None:
        data = {
            'shape': str(im.data.shape),
            'max': numpy.max(im.data),
            'min': numpy.min(im.data),
            'rms': numpy.std(im.data),
            'sum': numpy.sum(im.data),
            'medianabs': numpy.median(numpy.abs(im.data)),
            'median': numpy.median(im.data)
        }
    else:
        mdata = im.data[mask.data > 0.0]
        data = {
            'shape': str(im.data.shape),
            'max': numpy.max(mdata),
            'min': numpy.min(mdata),
            'rms': numpy.std(mdata),
            'sum': numpy.sum(mdata),
            'medianabs': numpy.median(numpy.abs(mdata)),
            'median': numpy.median(mdata)
        }

    qa = QA(origin="qa_image", data=data, context=context)
    return qa
示例#2
0
def qa_image(im, mask=None, **kwargs) -> QA:
    """Assess the quality of an image

    :param params:
    :param im:
    :return: QA
    """
    assert type(im) == Image
    if mask is None:
        data = {'shape': str(im.data.shape),
                'max': numpy.max(im.data),
                'min': numpy.min(im.data),
                'rms': numpy.std(im.data),
                'sum': numpy.sum(im.data),
                'medianabs': numpy.median(numpy.abs(im.data)),
                'median': numpy.median(im.data)}
    else:
        mdata = im.data[mask.data > 0.0]
        data = {'shape': str(im.data.shape),
                'max': numpy.max(mdata),
                'min': numpy.min(mdata),
                'rms': numpy.std(mdata),
                'sum': numpy.sum(mdata),
                'medianabs': numpy.median(numpy.abs(mdata)),
                'median': numpy.median(mdata)}
    
    qa = QA(origin="qa_image",
            data=data,
            context=get_parameter(kwargs, 'context', ""))
    return qa
示例#3
0
 def test_qa(self):
     qa = QA(origin='foo',
             data={
                 'rms': 100.0,
                 'median': 10.0
             },
             context='test of qa')
     log.debug(str(qa))
def qa_gaintable(gt, context=None):
    """Assess the quality of a gaintable

    :param gt:
    :returns: AQ
    """
    agt = numpy.abs(gt.gain)
    data = {
        'maxabs': numpy.max(agt),
        'minabs': numpy.min(agt),
        'rms': numpy.std(agt),
        'medianabs': numpy.median(agt),
        'residual': numpy.max(gt.residual)
    }
    return QA(origin='qa_gaintable', data=data, context=context)
示例#5
0
def qa_visibility(vis: Union[Visibility, BlockVisibility], context=None) -> QA:
    """Assess the quality of Visibility

    :param context:
    :param vis: Visibility to be assessed
    :return: QA
    """
    avis = numpy.abs(vis.vis)
    data = {
        'maxabs': numpy.max(avis),
        'minabs': numpy.min(avis),
        'rms': numpy.std(avis),
        'medianabs': numpy.median(avis)
    }
    qa = QA(origin=None, data=data, context=context)
    return qa
示例#6
0
def qa_image(im, context="") -> QA:
    """Assess the quality of an image

    :param im:
    :return: QA
    """
    assert isinstance(im, Image), im
    data = {'shape': str(im.data.shape),
            'max': numpy.max(im.data),
            'min': numpy.min(im.data),
            'rms': numpy.std(im.data),
            'sum': numpy.sum(im.data),
            'medianabs': numpy.median(numpy.abs(im.data)),
            'median': numpy.median(im.data)}
    
    qa = QA(origin="qa_image", data=data, context=context)
    return qa
示例#7
0
def qa_gaintable(gt: GainTable, context=None) -> QA:
    """Assess the quality of a gaintable

    :param gt:
    :return: AQ
    """
    agt = numpy.abs(gt.gain)
    pgt = numpy.angle(gt.gain)
    data = {
        'maxabs-amp': numpy.max(agt),
        'minabs-amp': numpy.min(agt),
        'rms-amp': numpy.std(agt),
        'medianabs-amp': numpy.median(agt),
        'maxabs-phase': numpy.max(pgt),
        'minabs-phase': numpy.min(pgt),
        'rms-phase': numpy.std(pgt),
        'medianabs-phase': numpy.median(pgt),
        'residual': numpy.max(gt.residual)
    }
    return QA(origin='qa_gaintable', data=data, context=context)