示例#1
0
 def test_pad_extract(self):
     for npixel, N2 in [(100, 128), (128, 256), (126, 128)]:
         # Make a 2D complex image of size (npixel, npixel) centred on (npixel//2, npixel//2)
         cs = 1 + self._pattern(npixel)
         # Pad it and extract npixel pixels around the centre
         cs_pad = pad_mid(cs, N2)
         # Now create the pattern we expect directly
         cs2 = 1 + self._pattern(N2) * N2 / npixel
         # At this point all fields in cs2 and cs_pad should either
         # be equal or zero.
         equal = numpy.abs(cs_pad - cs2) < 1e-15
         zero = numpy.abs(cs_pad) < 1e-15
         assert (equal + zero).all(), "Pad (%d, %d) failed" % (npixel, N2)
         # And extracting the middle should recover the original data
         assert_allclose(extract_mid(cs_pad, npixel), cs)
def predict_2d_base(vis: Union[BlockVisibility, Visibility], model: Image,
                    **kwargs) -> Union[BlockVisibility, Visibility]:
    """ Predict using convolutional degridding.

    This is at the bottom of the layering i.e. all transforms are eventually expressed in terms of
    this function. Any shifting needed is performed here.

    :param vis: Visibility to be predicted
    :param model: model image
    :return: resulting visibility (in place works)
    """
    if isinstance(vis, BlockVisibility):
        log.debug("imaging.predict: coalescing prior to prediction")
        avis = coalesce_visibility(vis, **kwargs)
    else:
        avis = vis

    assert isinstance(avis, Visibility), avis

    _, _, ny, nx = model.data.shape

    padding = {}
    if get_parameter(kwargs, "padding", False):
        padding = {'padding': get_parameter(kwargs, "padding", False)}
    spectral_mode, vfrequencymap = get_frequency_map(avis, model)
    polarisation_mode, vpolarisationmap = get_polarisation_map(avis, model)
    uvw_mode, shape, padding, vuvwmap = get_uvw_map(avis, model, **padding)
    kernel_name, gcf, vkernellist = get_kernel_list(avis, model, **kwargs)

    uvgrid = fft((pad_mid(model.data, int(round(padding * nx))) *
                  gcf).astype(dtype=complex))

    avis.data['vis'] = convolutional_degrid(vkernellist,
                                            avis.data['vis'].shape, uvgrid,
                                            vuvwmap, vfrequencymap,
                                            vpolarisationmap)

    # Now we can shift the visibility from the image frame to the original visibility frame
    svis = shift_vis_to_image(avis, model, tangent=True, inverse=True)

    if isinstance(vis, BlockVisibility) and isinstance(svis, Visibility):
        log.debug("imaging.predict decoalescing post prediction")
        return decoalesce_visibility(svis)
    else:
        return svis
示例#3
0
文件: base.py 项目: Luffky/arl_backup
def predict_2d_base(vis: Visibility, model: Image, **kwargs) -> Visibility:
    """ Predict using convolutional degridding.

    This is at the bottom of the layering i.e. all transforms are eventually expressed in terms of
    this function. Any shifting needed is performed here.

    :param vis: Visibility to be predicted
    :param model: model image
    :return: resulting visibility (in place works)
    """
    if type(vis) is not Visibility:
        avis = coalesce_visibility(vis, **kwargs)
    else:
        avis = vis
    _, _, ny, nx = model.data.shape
    # print(model.shape)
    spectral_mode, vfrequencymap = get_frequency_map(avis, model)  # 可以并行
    polarisation_mode, vpolarisationmap = get_polarisation_map(
        avis, model, **kwargs)  # 可以并行
    uvw_mode, shape, padding, vuvwmap = get_uvw_map(avis, model,
                                                    **kwargs)  # 可以并行
    kernel_name, gcf, vkernellist = get_kernel_list(avis, model, **kwargs)
    uvgrid = fft((pad_mid(model.data, int(round(padding * nx))) *
                  gcf).astype(dtype=complex))
    avis.data['vis'] = convolutional_degrid(vkernellist,
                                            avis.data['vis'].shape, uvgrid,
                                            vuvwmap, vfrequencymap,
                                            vpolarisationmap)

    # Now we can shift the visibility from the image frame to the original visibility frame
    svis = shift_vis_to_image(avis, model, tangent=True, inverse=True)

    if type(vis) is not Visibility:
        return decoalesce_visibility(svis)
    else:
        return svis
示例#4
0
def predict_2d_base_timing(vis: Visibility, model: Image,
                           **kwargs) -> (Visibility, tuple):
    """ Predict using convolutional degridding.

    This is at the bottom of the layering i.e. all transforms are eventually expressed in terms of
    this function. Any shifting needed is performed here.

    :param vis: Visibility to be predicted
    :param model: model image
    :return: resulting visibility (in place works)
    """
    if not isinstance(vis, Visibility):
        avis = coalesce_visibility(vis, **kwargs)
    else:
        avis = vis

    _, _, ny, nx = model.data.shape

    opt = get_parameter(kwargs, 'opt', False)
    if not opt:
        log.debug('Using original algorithm')
    else:
        log.debug('Using optimized algorithm')

    padding = {}
    if get_parameter(kwargs, "padding", False):
        padding = {'padding': get_parameter(kwargs, "padding", False)}
    spectral_mode, vfrequencymap = get_frequency_map(avis, model, opt)
    polarisation_mode, vpolarisationmap = get_polarisation_map(avis, model)
    uvw_mode, shape, padding, vuvwmap = get_uvw_map(avis, model, **padding)
    kernel_name, gcf, vkernellist = get_kernel_list(avis, model, **kwargs)
    inarr = (pad_mid(model.data, int(round(padding * nx))) *
             gcf).astype(dtype=complex)

    # Use original algorithm
    if not opt:
        time_fft = -time.time()
        uvgrid = fft(inarr)
        time_fft += time.time()

        time_degrid = -time.time()
        vt = convolutional_degrid(vkernellist, avis.data['vis'].shape, uvgrid,
                                  vuvwmap, vfrequencymap, vpolarisationmap)
        time_degrid += time.time()

    # Use optimized algorithm
    else:
        time_fft = -time.time()
        uvgrid = numpy.zeros(inarr.shape, dtype=inarr.dtype)
        fft_c(uvgrid, inarr)
        time_fft += time.time()

        time_degrid = -time.time()
        kernel_indices, kernels = vkernellist
        ks0, ks1, ks2, ks3 = kernels[0].shape
        kernels_c = numpy.zeros((len(kernels), ks0, ks1, ks2, ks3),
                                dtype=kernels[0].dtype)
        for i in range(len(kernels)):
            kernels_c[i, ...] = kernels[i]

        vfrequencymap_c = numpy.array(vfrequencymap, dtype=numpy.int32)
        vt = numpy.zeros(avis.data['vis'].shape, dtype=numpy.complex128)
        convolutional_degrid_c(vt, native_order(kernels_c),
                               native_order(kernel_indices),
                               native_order(uvgrid), native_order(vuvwmap),
                               native_order(vfrequencymap_c))
        time_degrid += time.time()

    avis.data['vis'] = vt

    # Now we can shift the visibility from the image frame to the original visibility frame
    svis = shift_vis_to_image(avis, model, tangent=True, inverse=True)

    if not isinstance(vis, Visibility):
        svis = decoalesce_visibility(svis)

    return svis, (time_degrid, time_fft)