示例#1
0
def train_network_scenario1(prototypes1, prototypes2, origin, train_data='train_data.p', val_data='validation_data.p'):
    """
    Combines the networks for the arm and the eye. Arm is dominant over the eye, as in scenario 2, so the eye recieves its input from the arm and its target.
    Also plots a lot of information about loss and accuracy.
    Saves the weights of the network
    Input: prototypes for the arm, prototypes for the eye, point of origin of both models, trainingdata for the arm, validationdata for the eye
    Output: -
    """

    epochs = 150  # number of epochs

    print 'network1'
    network1, train_fn1, val_fn1 = create_network(prototypes1)
    print 'network2'
    network2, train_fn2, val_fn2 = create_network(prototypes2, n_inputs=4)

    print 'Networks done'
    eyes = Eyes(origin=origin, visualize=False)
    arm = Arm(origin=origin, visualize=False)

    print 'moare stuff'
    # Arrays for saving performance after each epoch
    means_arm = np.zeros(epochs)
    stds_arm = np.zeros(epochs)
    train_losses_arm = np.zeros(epochs)
    val_losses_arm = np.zeros(epochs)
    means_eye = np.zeros(epochs)
    stds_eye = np.zeros(epochs)
    train_losses_eye = np.zeros(epochs)
    val_losses_eye = np.zeros(epochs)
    dists_eye = np.zeros(epochs)
    dists_arm = np.zeros(epochs)

    print "Train network"

    for e in tqdm(range(epochs)):

        total_mean_arm = 0
        total_std_arm = 0
        total_mean_eye = 0
        total_std_eye = 0
        total_error_arm = 0
        total_error_eye = 0
        train_loss_arm = 0
        val_loss_arm = 0
        train_loss_eye = 0
        val_loss_eye = 0

        # training epoch
        i = 0
        for input_batch, output_batch in iterate_data(data_file=train_data):
            pred1, train_loss1 = train_fn1(input_batch, output_batch)
            arm_angles = np.array([arm.calculate_angles(x, y) for [x, y] in input_batch], dtype='float32')  # same targets as arm
            eye_positions = [calc_intersect(left, right) for [left, right] in pred1]  # get x,y from predicted eye angels
            arm_input = np.hstack((input_batch, eye_positions)).astype('float32')  # first the eye coordinates, take care when combining prototypes
            pred2, train_loss2 = train_fn2(arm_input, arm_angles)

            train_loss_arm += train_loss2
            train_loss_eye += train_loss1
            i += 1
        # Take average loss of this epoch
        train_loss_arm = train_loss_arm / i
        train_loss_eye = train_loss_eye / i

        n = 0
        # Validation Epoch
        for inp_val, out_val in iterate_data(data_file=val_data):
            predictions_eye, loss_eye = val_fn1(inp_val, out_val)
            dist_eye, mean_eye, std_eye = evaluate(predictions_eye, out_val)  # dist_arm is for debugging

            arm_angles = np.array([arm.calculate_angles(x, y) for [x, y] in inp_val], dtype='float32')
            eye_positions = [calc_intersect(left, right) for [left, right] in predictions_eye]

            arm_input = np.hstack((inp_val, eye_positions)).astype('float32')
            prediction_arm, loss_arm = val_fn2(arm_input, arm_angles)
            dist_arm, mean_arm, std_arm = evaluate(prediction_arm, inp_val)
            arm_positions = np.array([arm.move_arm(shoulder, shoulder) for [shoulder, elbow] in prediction_arm])

            arm_error_dist, mean_arm_error, std_arm_error = evaluate(arm_positions, inp_val)
            eye_error_dist, mean_eye_error, std_eye_error = evaluate(eye_positions, inp_val)

            total_error_arm += mean_arm_error
            total_error_eye += mean_eye_error

            n += 1
            total_mean_arm += mean_arm
            total_std_arm += std_arm
            total_mean_eye += mean_eye
            total_std_eye += std_eye
            val_loss_arm += loss_arm
            val_loss_eye += loss_eye


        # Save epoch data
        means_arm[e] = total_mean_arm / n
        stds_arm[e] = total_std_arm / n
        train_losses_arm[e] = train_loss_arm
        val_losses_arm[e] = val_loss_arm / n
        means_eye[e] = total_mean_eye / n
        stds_eye[e] = total_std_eye / n
        train_losses_eye[e] = train_loss_eye
        val_losses_eye[e] = val_loss_eye / n
        dists_eye[e] = total_error_eye / n
        dists_arm[e] = total_error_arm / n

    # Plots
    # Plot mean and std
    plt.figure()
    meanplot_arm, = plt.plot(means_arm, label='mean arm')
    stdplot_arm, = plt.plot(stds_arm, label='std arm')
    meanplot_eye, = plt.plot(means_eye, label='mean eye')
    stdplot_eye, = plt.plot(stds_eye, label='std eye')

    plt.legend(handles=[meanplot_arm, stdplot_arm, meanplot_eye, stdplot_eye])
    plt.savefig('../images/scenario1/accuracy_combined.png')
    plt.show()

    # Plot just the means
    plt.figure()
    meanplot_arm, = plt.plot(means_arm, label='mean arm')
    meanplot_eye, = plt.plot(means_eye, label='mean eye')
    plt.legend(handles=[meanplot_arm, meanplot_eye])
    plt.savefig('../images/scenario1/accuracy_combined_arm.png')

    # Ploot the train and validations losses
    plt.figure()
    trainplot_arm, = plt.plot(train_losses_arm, label='train loss arm')
    valplot_arm, = plt.plot(val_losses_arm, label='val loss arm')
    trainplot_eye, = plt.plot(train_losses_eye, label='train loss eye')
    valplot_eye, = plt.plot(val_losses_eye, label='val loss eye')

    plt.legend(handles=[trainplot_arm, valplot_arm, trainplot_eye, valplot_eye])
    plt.savefig('../images/scenario1/loss_combined.png')
    plt.show()

    # Plot distance errors
    plt.figure()
    distsplot_arm, = plt.plot(dists_arm, label='Distance Error arm')
    plt.legend(handles=[distsplot_arm])
    plt.savefig('../images/scenario1/distance_error_arm.png')
    plt.show()
    np.save('../images/scenario1/distance_arm', dists_arm)

    # Plot Distance error ot the eye
    plt.figure()
    distsplot_eye, = plt.plot(dists_eye, label='Distance Error eye')
    plt.legend(handles=[distsplot_eye])
    plt.savefig('../images/scenario1/distance_error_eye.png')
    plt.show()
    np.save('../images/scenario1/distance_eye', dists_eye)

    # Save the weights
    np.save('network_arm_s1', layers.get_all_param_values(network1))
    np.save('network_eye_s1', layers.get_all_param_values(network2))

    return  # network, predictions
示例#2
0
def train_network(prototypes, train_data = 'train_data.p', val_data = 'validation_data.p'):
    """
    Legacy Code, doesnt work anymore
    Trains a single network (eithers arm of eye model)
    Also plots some of information about loss and accuracy.
    Input: prototypes of the model, train data, validation data
    Output: -
    """
    
    network, train_fn, val_fn = create_network(prototypes)

    epochs = 150
    means = np.zeros(epochs)
    stds = np.zeros(epochs)
    train_losses = np.zeros(epochs)
    val_losses = np.zeros(epochs)
    dists = np.zeros(epochs)

    arm = Arm(origin=0, visualize=False)

    print "Train network"

    for e in tqdm(range(epochs)):
        #Train epoch

        for input_batch, output_batch in iterate_data(data_file = train_data):
            pred, train_loss = train_fn(input_batch, output_batch)


        total_mean = 0
        total_std = 0
        total_dist = 0
        n = 0
        for inp_val, out_val in iterate_data(data_file = val_data):

            #validation epoch
            predictions, loss = val_fn(inp_val, out_val)
            dist, mean, std = evaluate(predictions, out_val)
            arm_positions = np.array([arm.move_arm(shoudler, elbow) for [shoudler, elbow] in predictions])
            eye_error_dist, mean_eye_error, std_eye_error = evaluate(arm_positions, inp_val)

            n += 1
            total_mean += mean
            total_std += std
            total_dist += mean_eye_error


        means[e] = total_mean/n
        stds[e] = total_std/n
        train_losses[e] = train_loss
        val_losses[e] = loss
        dists[e] = total_dist/n
        np.save('network_epoch' + str(e), layers.get_all_param_values(network))   

    #Plots
    plt.figure()
    distplot, = plt.plot(dists, label = 'arm distance error')
    plt.legend(handles = [distplot])
    plt.savefig('../images/arm_error.png')
    plt.show()

    plt.figure()
    meanplot, = plt.plot(means, label = 'mean')
    stdplot, = plt.plot(stds, label = 'std')
    plt.legend(handles = [meanplot, stdplot])
    plt.savefig('../images/arm_angles.png')
    plt.show()

    plt.figure()
    trainplot, = plt.plot(train_losses, label = 'train loss')
    valplot, = plt.plot(val_losses, label = 'val loss')
    plt.legend(handles = [trainplot, valplot])
    plt.savefig('../images/arm_losses.png')
    plt.show()
    
    print "saving network"
    np.save('network_arm', layers.get_all_param_values(network))
    print "done saving"


    
    return network, predictions