# looping the code for a in obs.shortlist: #obsTime="20130829.1800" #kongreyDSS.load() # reload dss.unload() obsTime = a.dataTime pp.pipeline(dss=dss, filteringAlgorithm = filters.gaussianFilter, filteringAlgorithmArgs = {'sigma':5, 'stream_key': "obs" }, matchingAlgorithm = algorithms.nonstandardKernel, matchingAlgorithmArgs = {'obsTime': obsTime, 'maxHourDiff':7, 'regions':regions, 'k' : 24, # steps of semi-lagrangian advections performed 'shiibaArgs':{'searchWindowWidth':11, 'searchWindowHeight':7, }, 'outputFolder':outputFolder, 'volumeProportionWeight':volumeProportionWeight, } , outputFolder=outputFolder, toLoad=False, #remarks= "Covariance used, rather than correlation: algorithms.py line 221: tempScore = a1.cov(w1)[0,1]", remarks = "Correlation used" ) print 'start time:', startTime print 'total time spent:', time.time()-time0
for a in obs.shortlist: # obsTime="20130829.1800" # kongreyDSS.load() # reload dss.unload() obsTime = a.dataTime pp.pipeline( dss=dss, filteringAlgorithm=filters.gaussianFilter, filteringAlgorithmArgs={"sigma": 5, "stream_key": "all"}, matchingAlgorithm=algorithms.nonstandardKernel, matchingAlgorithmArgs={ "obsTime": obsTime, "maxHourDiff": 6, "regions": regions, "k": 24, # steps of semi-lagrangian advections performed "shiibaArgs": {"searchWindowWidth": 15, "searchWindowHeight": 9}, "outputFolder": outputFolder, "volumeProportionWeight": volumeProportionWeight, }, outputFolder=outputFolder, toLoad=False, # remarks= "Covariance used, rather than correlation: algorithms.py line 221: tempScore = a1.cov(w1)[0,1]", remarks="Correlation used", ) print "start time:", startTime print "total time spent:", time.time() - time0
for a in obs.shortlist: #obsTime="20130829.1800" #kongreyDSS.load() # reload dss.unload() obsTime = a.dataTime pp.pipeline(dss=dss, #filteringAlgorithm = filters.gaussianFilter, #filteringAlgorithmArgs = {'sigma':5, # 'stream_key': "obs" }, filteringAlgorithm = "", matchingAlgorithm = algorithms.shiftedCorr, matchingAlgorithmArgs = {'obsTime': obsTime, 'maxHourDiff':6, 'regions':regions, 'outputFolder':outputFolder, 'volumeProportionWeight':volumeProportionWeight, 'maxLatDiff': 16, 'maxLongDiff': 24, 'shiftStep': 4, } , outputFolder=outputFolder, toLoad=False, #remarks= "Covariance used, rather than correlation: algorithms.py line 221: tempScore = a1.cov(w1)[0,1]", remarks = "Correlation used" ) print 'start time:', startTime print 'total time spent:', time.time()-time0
hualien4 = misc.getFourCorners(dp.hualienCounty) yilan4 = misc.getFourCorners(dp.yilanCounty) kaohsiung4 = misc.getFourCorners(dp.kaohsiungCounty) regions = [{'name': "hualien", 'points': hualien4, 'weight': 0.4}, {'name': "kaohsiung", 'points':kaohsiung4, 'weight':0.3}, {'name':"yilan", 'points':yilan4, 'weight':0.3}, ] ### next up: work on the i/o so that i don't need to exit/re-enter ipython every time # for loop added 18-03-2014 for a in kongreyDSS.obs: kongreyDSS.load() # reload pp.pipeline(dss=kongreyDSS, filteringAlgorithm = filters.gaussianFilter, filteringAlgorithmArgs = {'sigma':5}, matchingAlgorithm = algorithms.nonstandardKernel, matchingAlgorithmArgs = {'obsTime': a.dataTime, 'maxHourDiff':7, 'regions':regions, 'k' : 48, # steps of semi-lagrangian advections performed 'shiibaArgs':{'searchWindowWidth':11, 'searchWindowHeight':11, }, } , outputFolder=dp.defaultRootFolder + "labReports/2014-03-07-filter-matching-scoring-pipeline/", toLoad=False, remarks= "Covariance used, rather than correlation: algorithms.py line 221: tempScore = a1.cov(w1)[0,1]", ) print 'start time:', startTime print 'time spent:', time.time()-time0
if not os.path.exists(outputFolder): os.makedirs(outputFolder) shutil.copyfile(dp.defaultRootFolder+"python/armor/validation/"+ scriptFileName, outputFolder+ scriptFileName) shutil.copyfile(dp.defaultRootFolder+"python/armor/patternMatching/algorithms.py", outputFolder+ "algorithms.py") shutil.copyfile(dp.defaultRootFolder+"python/armor/patternMatching/pipeline.py", outputFolder+ "pipeline.py") ################################################################################ # looping the code for a in obs.shortlist: #obsTime="20130829.1800" #kongreyDSS.load() # reload dss.unload() obsTime = a.dataTime pp.pipeline(dss=dss, filteringAlgorithm = filteringAlgorithm, filteringAlgorithmArgs = filteringAlgorithmArgs, matchingAlgorithm = matchingAlgorithm, matchingAlgorithmArgs = matchingAlgorithmArgs, outputFolder=outputFolder, toLoad=False, #remarks= "Covariance used, rather than correlation: algorithms.py line 221: tempScore = a1.cov(w1)[0,1]", remarks = "Correlation used" ) print 'start time:', startTime print 'total time spent:', time.time()-time0