def compare(A: DataType, B: DataType):
    A = normalize_to_spectrum(A)
    attrs = A.attrs
    B = normalize_to_spectrum(B)

    # normalize total intensity
    TOTAL_INTENSITY = 1000000
    A = A / (A.sum(A.dims) / TOTAL_INTENSITY)
    B = B / (B.sum(B.dims) / TOTAL_INTENSITY)
    A.attrs.update(**attrs)

    tool = ComparisonTool(other=B)
    return tool.make_tool(A)
def estimate_prior_adjustment(data: DataType,
                              region: Union[dict, str] = None) -> float:
    r"""
    Estimates the parameters of a distribution generating the intensity
    histogram of pixels in a spectrum. In a perfectly linear, single-electron
    single-count detector, this would be a poisson distribution with
    \lambda=mean(counts) over the window. Despite this, we can estimate \lambda
    phenomenologically and verify that a Poisson distribution provides a good
    prior for the data, allowing us to perform statistical bootstrapping.

    You should use this with a spectrum that has uniform intensity, i.e. with a
    copper reference or similar.

    :param data:
    :return: returns sigma / mu, adjustment factor for the Poisson distribution
    """
    data = normalize_to_spectrum(data)

    if region is None:
        region = 'copper_prior'

    region = normalize_region(region)

    if 'cycle' in data.dims:
        data = data.sum('cycle')

    data = data.S.zero_spectrometer_edges().S.region_sel(region)
    values = data.values.ravel()
    values = values[np.where(values)]
    return np.std(values) / np.mean(values)
示例#3
0
def build_cycle_fermi_edge_correction(data: DataType, energy_range=None):
    arr = normalize_to_spectrum(data)

    if 'pixels' in arr.dims or 'phi' in arr.dims:
        arr = arr.S.region_sel('wide_angular')

    if energy_range is None:
        energy_range = slice(-0.1, 0.1)

    arr = arr.S.sum_other(['eV', 'cycle'])
    return broadcast_model(GStepBModel, arr.sel(eV=energy_range), 'cycle')
示例#4
0
def fs_gap(data: DataType, shape=None, energy_range=None):
    data = normalize_to_spectrum(data)

    if energy_range is None:
        energy_range = slice(-0.1, None)

    data.sel(eV=energy_range)

    reduction = None
    if shape is None:
        # Just rebin the data along 'phi'
        reduction = {'phi': 16}

    data = rebin(data, reduction=reduction, shape=shape)
    return broadcast_model(GStepBModel, data, ['phi', 'beta'])
示例#5
0
def normalize_total(data: DataType):
    data = normalize_to_spectrum(data)

    return data / (data.sum(data.dims) / 1000000)