from array_module import reshape_input from csv_module import load_execution_files #linux #base_directory = '/home/jadson/git/deeplearning/data' #macos base_directory = '/Users/jadson/git/deeplearning/data' lstm_model = base_directory + '/lstm_model.h5' # size of the data set sample_number = 1 timesteps = 100 features = 1 # load model from single file model = load_model(lstm_model) print(' ------- loading traning data ------ ') x = load_execution_files(base_directory, sample_number) x = reshape_input(x, 1, timesteps, features) # 256 samples x 100 timesteps x 1 features print(x) # make predictions yhat = model.predict(x, verbose=0) #yhat = model.predict_classes(x, verbose=1) print(yhat)
classes = 10 #configuration of lstm lstm_layer_size = 100 dence_layer_size = 10 batch_size = 16 epochs = 100 # ====================================================== # ============= LOAD THE TRANING DATA FROM THE /data/training =============== print(' ------- loading traning data ------ ') x_train = load_traning_files(training_directory, traning_samples) x_train3d = reshape_input(x_train, traning_samples, timesteps, features) # 256 samples x 100 timesteps x 1 features print(' ------- loading traning output data ------ ') y_train = load_traning_output_files( training_directory, traning_samples) # 256 samples x 10 classes # ============= LOAD THE TEST DATA FROM THE /data/tests =============== print(' ------- loading test data ------ ') x_test = load_test_files(test_directory, test_samples) # 100 timesteps x 1 feature x_test3d = reshape_input(x_test, test_samples, timesteps, features) # 10 samples x 100 timesteps x 1 feature
#features_indexes = [0,1,2,3,5] lstm_layer_size = 32 dence_layer_size = 10 batch_size = 64 epochs = 10 # ====================================================== # ==================== prepare LSTM data =============== #prepareLSTMdata(raw_data_file_name, deep_network_file_name, features_indexes) cvs_raw_data = load_csv_data2(deep_network_file_name) #print(cvs_raw_data) x_train = reshape_input(cvs_raw_data, samples, timesteps, features) # 1 x 10 x 5 #print('### 4 ###') #print(lstm_input_data) y_train = np.array([[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]]) # 1 x 10 # 5 features, 10 timesteps x_test = array([[0.1, 1.0, 0.1, 1.0, 0.0], [0.2, 0.9, 0.1, 1.0, 0.0], [0.3, 0.8, 0.1, 1.0, 0.0], [0.4, 0.7, 0.1, 1.0, 0.0], [0.5, 0.6, 0.1, 1.0, 0.0], [0.6, 0.5, 0.1, 1.0, 0.0], [0.7, 0.4, 0.1, 1.0, 0.0], [0.8, 0.3, 0.1, 1.0, 0.0], [0.9, 0.2, 0.1, 1.0, 0.0], [1.0, 0.1, 0.1, 1.0, 0.0]]) x_test = reshape_input(x_test, samples, timesteps, features) # 1 x 10 x 5