def run(name): inliers_threshold = 50. n_samples = 5000 epsilon = 0 print(name) path = '../data/{0}/'.format(name) data = load(path) model_class = fundamental.Fundamental img_size = data['img2'].shape[:2] nfa_proba = (2. * np.linalg.norm(img_size) / np.prod(img_size)) sampler = sampling.UniformSampler(n_samples) generator = sampling.ModelGenerator(model_class, data['data'], sampler) # generator = multigs.ModelGenerator(model_class, data['data'], n_samples) min_sample_size = model_class().min_sample_size ac_tester = ac.ImageTransformNFA(epsilon, nfa_proba, min_sample_size) thresholder = membership.GlobalThresholder(inliers_threshold) seed = 0 # seed = np.random.randint(0, np.iinfo(np.uint32).max) print('seed:', seed) np.random.seed(seed) prefix = name test_transformations.test(model_class, data, prefix, generator, thresholder, ac_tester, name) plt.close('all')
def run(subsampling=1, inliers_threshold=0.1, run_regular=True): log_filename = 'logs/piazza_bra_s{0}.txt'.format(subsampling) logger = utils.Logger(log_filename) sys.stdout = logger sigma = 1 epsilon = 0 local_ratio = 3. name = 'Piazza_Bra' dirname = '../data/' + name + '/' mat = scipy.io.loadmat(dirname + 'Samantha_Bra.mat') data = mat['Points'] # subsample the input points points_considered = np.arange(0, data.shape[0], subsampling) data = data[points_considered, :] n_samples = data.shape[0] * 2 sampler = sampling.GaussianLocalSampler(sigma, n_samples) ransac_gen = sampling.ModelGenerator(plane.Plane, data, sampler) thresholder = membership.LocalThresholder(inliers_threshold, ratio=local_ratio) min_sample_size = plane.Plane().min_sample_size ac_tester = ac.BinomialNFA(epsilon, 1. / local_ratio, min_sample_size) seed = 0 # seed = np.random.randint(0, np.iinfo(np.uint32).max) print('seed:', seed) np.random.seed(seed) output_prefix = name + '_n{0}'.format(data.shape[0]) test_3d.test(plane.Plane, data, output_prefix, ransac_gen, thresholder, ac_tester, run_regular=run_regular) plt.close('all') sys.stdout = logger.stdout logger.close() return log_filename
def run(types, inliers_threshold=0.02, local_ratio=3., restimate_gt=False): # Sampling ratio with respect to the number of elements sampling_factor = 10 # a contrario test parameters epsilon = 0. config = {'Star5': line.Line, 'Star11': line.Line, 'Stairs': line.Line, 'Circles': circle.Circle, } stats_list = [] mat = scipy.io.loadmat('../data/JLinkageExamples.mat') for example in mat.keys(): for c in types: if example.find(c) == 0: ex_type = c break else: continue model_class = config[ex_type] data = mat[example].T min_sample_size = model_class().min_sample_size n_samples = data.shape[0] * sampling_factor * min_sample_size sampler = sampling.UniformSampler(n_samples) generator = sampling.ModelGenerator(model_class, data, sampler) proba = 1. / local_ratio ac_tester = ac.BinomialNFA(epsilon, proba, min_sample_size) thresholder = membership.LocalThresholder(inliers_threshold, ratio=local_ratio) match = re.match('[a-zA-Z]+[0-9]*_', example) try: match = re.search('[0-9]+', match.group()) n_groups = int(match.group()) except AttributeError: n_groups = 4 if restimate_gt: gt_groups = ground_truth(data, n_groups, model_class=model_class, thresholder=thresholder) else: gt_groups = ground_truth(data, n_groups) seed = 0 # seed = np.random.randint(0, np.iinfo(np.uint32).max) print('seed:', seed) np.random.seed(seed) output_prefix = example if restimate_gt: dir_name = 'test_2d_restimate_gt' else: dir_name = 'test_2d_given_gt' res = test(model_class, data, output_prefix, generator, thresholder, ac_tester, gt_groups, dir_name=dir_name) stats_list.append(res) print('-'*40) plt.close('all') reg_list, comp_list = zip(*stats_list) print('Statistics of regular bi-clustering') test_utils.compute_stats(reg_list) print('Statistics of compressed bi-clustering') test_utils.compute_stats(comp_list) print('-'*40)
def evaluate_york(res_dir_name, run_with_lsd=False): # RANSAC parameter inliers_threshold = np.pi * 1e-2 logger = test_utils.Logger('logs/' + res_dir_name + '.txt') sys.stdout = logger dir_name = '/Users/mariano/Documents/datasets/YorkUrbanDB/' sampling_factor = 4 epsilon = 0 local_ratio = 3. ac_tester = ac.BinomialNFA(epsilon, 1. / local_ratio, vp.VanishingPoint().min_sample_size) thresholder = membership.LocalThresholder(inliers_threshold, ratio=local_ratio) stats_list = [] for i, example in enumerate(os.listdir(dir_name)): if not os.path.isdir(dir_name + example): continue img_name = dir_name + '{0}/{0}.jpg'.format(example) gray_image = PIL.Image.open(img_name).convert('L') gt_name = dir_name + '{0}/{0}LinesAndVP.mat'.format(example) mat = scipy.io.loadmat(gt_name) gt_lines = mat['lines'] gt_segments = [lsd.Segment(gt_lines[k, :], gt_lines[k + 1, :]) for k in range(0, len(gt_lines), 2)] gt_segments = np.array(gt_segments) gt_association = np.squeeze(mat['vp_association']) if run_with_lsd: segments = lsd.compute(gray_image) segments = np.array(segments) gt_groups = ground_truth(gt_association, gt_segments, segments, thresholder=thresholder) else: segments = gt_segments gt_groups = [gt_association == v for v in np.unique(gt_association)] sampler = sampling.UniformSampler(len(segments) * sampling_factor) ransac_gen = sampling.ModelGenerator(vp.VanishingPoint, segments, sampler) seed = 0 # seed = np.random.randint(0, np.iinfo(np.uint32).max) print('seed:', seed) np.random.seed(seed) res = test(gray_image, segments, res_dir_name, example, ransac_gen, thresholder, ac_tester, gt_groups=gt_groups) stats_list.append(res) print('-'*40) plt.close('all') reg_list, comp_list = zip(*stats_list) print('Statistics of regular bi-clustering') test_utils.compute_stats(reg_list) print('Statistics of compressed bi-clustering') test_utils.compute_stats(comp_list) sys.stdout = logger.stdout logger.close()
def run(subsampling=1, inliers_threshold=0.1, run_regular=True): log_filename = 'logs/pozzoveggiani_s{0}.txt'.format(subsampling) logger = utils.Logger(log_filename) sys.stdout = logger sigma = 1 epsilon = 0 local_ratio = 3 name = 'PozzoVeggiani' dirname = '../data/' + name + '/' mat = scipy.io.loadmat(dirname + 'Results.mat') data = mat['Points'].T proj_mat = mat['Pmat'] visibility = mat['Visibility'] # Removing far away points for display keep = functools.reduce( np.logical_and, [data[:, 0] > -10, data[:, 0] < 20, data[:, 2] > 10, data[:, 2] < 45]) data = data[keep, :] visibility = visibility[keep, :] # Re-order dimensions and invert vertical direction to get upright data data[:, 1] *= -1 data = np.take(data, [0, 2, 1], axis=1) proj_mat[:, 1, :] *= -1 proj_mat = np.take(proj_mat, [0, 2, 1, 3], axis=1) # subsample the input points points_considered = np.arange(0, data.shape[0], subsampling) data = data[points_considered, :] visibility = visibility[points_considered, :] n_samples = data.shape[0] * 2 sampler = sampling.GaussianLocalSampler(sigma, n_samples) generator = sampling.ModelGenerator(plane.Plane, data, sampler) thresholder = membership.LocalThresholder(inliers_threshold, ratio=local_ratio) min_sample_size = plane.Plane().min_sample_size ac_tester = ac.BinomialNFA(epsilon, 1. / local_ratio, min_sample_size) projector = Projector(data, visibility, proj_mat, dirname) seed = 0 # seed = np.random.randint(0, np.iinfo(np.uint32).max) print('seed:', seed) np.random.seed(seed) output_prefix = name + '_n{0}'.format(data.shape[0]) test_3d.test(plane.Plane, data, output_prefix, generator, thresholder, ac_tester, plotter=projector, run_regular=run_regular) plt.close('all') sys.stdout = logger.stdout logger.close() return log_filename