示例#1
0
文件: learn.py 项目: afcarl/skid
def f1(name, data, w):
    print
    print name
    f = F1()
    for (i, x) in enumerate(data):
        f.report(i, predict(w, x.features), x.label)
    f.scores()
示例#2
0
文件: example.py 项目: w0lker/crf
 def f1(data, name):
     print
     print 'Phrase-based F1:', name
     f1 = F1()
     for i, x in enumerate(iterview(data)):
         predict = extract_contiguous(model(x))
         truth = extract_contiguous(x.truth)
         # (i,begin,end) uniquely identifies the span
         for (label, begins, ends) in truth:
             f1.add_relevant(label, (i, begins, ends))
         for (label, begins, ends) in predict:
             f1.add_retrieved(label, (i, begins, ends))
     print
     return f1.scores(verbose=True)
示例#3
0
文件: learn.py 项目: afcarl/skid
    def _f1(name, data, c, verbose=True):
        if verbose:
            print
            print name
        f = F1()
        for (i, x) in enumerate(data):

            phi = dok_matrix((1, N_FEATURES))
            for k in x.features:
                phi[0, alphabet[k] % N_FEATURES] = 1.0

            [y] = c.predict(phi)
            f.report(i, y, x.label)
        f.scores(verbose=verbose)
        return f
示例#4
0
 def evaluate(self, predict, data, name, verbosity=1):
     if not data:
         return
     if verbosity:
         print()
         print('Phrase-based F1:', name)
     f1 = F1()
     for i, x in enumerate(iterview(data, msg='Eval %s' % name)):
         pred = extract_contiguous(predict(x))
         gold = extract_contiguous(self.Y.lookup_many(x.tags))
         # (i,begin,end) uniquely identifies the span
         for (label, begins, ends) in gold:
             f1.add_relevant(label, (i, begins, ends))
         for (label, begins, ends) in pred:
             f1.add_retrieved(label, (i, begins, ends))
     if verbosity:
         print()
     return f1.scores(verbose=verbosity >= 1)
示例#5
0
    def evaluate(self, predict, data, msg, verbosity=2):
        "Run predict `predict` function on data."

        if not data:
            return float('nan'), []

        ff = F1()

        correct = Counter()
        total = Counter()

        for ii, x in enumerate(iterview(data,
                                        colors.blue % 'Eval (%s)' % msg)):

            y = predict(x)
            gold = self.Y.lookup_many(x.tags)

            for t, (got, want) in enumerate(zip(y, gold)):
                if verbosity >= 2:
                    ff.report(instance=(ii, t), prediction=got, target=want)
                for c in self.error_classifications(x, t):
                    if got == want:
                        correct[c] += 1
                    total[c] += 1

        #print 'sentences:', len(data), 'tokens:', total['overall']

        c = 'overall'
        acc = '%s: %.2f' % (colors.light_yellow % c,
                            100 * correct[c] / total[c])
        other = total.keys()
        other.remove(c)
        breakdown = ', '.join('%s: %.2f' % (c, 100 * correct[c] / total[c])
                              for c in sorted(other))

        print '%s (%s)' % (acc, breakdown)

        if verbosity >= 2:
            print
            print 'F1 breakdown'
            print '============'
            ff.scores()

        return correct['overall'] / total['overall']