示例#1
0
    def test_7_keras_iris_clipped(self):
        classifier = get_tabular_classifier_kr()

        attack = NewtonFool(classifier, max_iter=5, verbose=False)
        x_test_adv = attack.generate(self.x_test_iris)
        self.assertFalse((self.x_test_iris == x_test_adv).all())
        self.assertTrue((x_test_adv <= 1).all())
        self.assertTrue((x_test_adv >= 0).all())

        preds_adv = np.argmax(classifier.predict(x_test_adv), axis=1)
        self.assertFalse((np.argmax(self.y_test_iris,
                                    axis=1) == preds_adv).all())
        acc = np.sum(preds_adv == np.argmax(
            self.y_test_iris, axis=1)) / self.y_test_iris.shape[0]
        logger.info(
            "Accuracy on Iris with NewtonFool adversarial examples: %.2f%%",
            (acc * 100))
示例#2
0
    def test_6_scikitlearn(self):
        from sklearn.linear_model import LogisticRegression
        from sklearn.svm import SVC, LinearSVC

        from art.estimators.classification.scikitlearn import SklearnClassifier

        scikitlearn_test_cases = [
            LogisticRegression(solver="lbfgs", multi_class="auto"),
            SVC(gamma="auto"),
            LinearSVC(),
        ]

        x_test_original = self.x_test_iris.copy()

        for model in scikitlearn_test_cases:
            classifier = SklearnClassifier(model=model, clip_values=(0, 1))
            classifier.fit(x=self.x_test_iris, y=self.y_test_iris)

            attack = NewtonFool(classifier,
                                max_iter=5,
                                batch_size=128,
                                verbose=False)
            x_test_adv = attack.generate(self.x_test_iris)
            self.assertFalse((self.x_test_iris == x_test_adv).all())
            self.assertTrue((x_test_adv <= 1).all())
            self.assertTrue((x_test_adv >= 0).all())

            preds_adv = np.argmax(classifier.predict(x_test_adv), axis=1)
            self.assertFalse((np.argmax(self.y_test_iris,
                                        axis=1) == preds_adv).all())
            acc = np.sum(preds_adv == np.argmax(
                self.y_test_iris, axis=1)) / self.y_test_iris.shape[0]
            logger.info(
                "Accuracy of " + classifier.__class__.__name__ +
                " on Iris with NewtonFool adversarial examples"
                ": %.2f%%",
                (acc * 100),
            )

            # Check that x_test has not been modified by attack and classifier
            self.assertAlmostEqual(float(
                np.max(np.abs(x_test_original - self.x_test_iris))),
                                   0.0,
                                   delta=0.00001)
示例#3
0
    def test_8_keras_iris_unbounded(self):
        classifier = get_tabular_classifier_kr()

        # Recreate a classifier without clip values
        classifier = KerasClassifier(model=classifier._model,
                                     use_logits=False,
                                     channels_first=True)
        attack = NewtonFool(classifier, max_iter=5, batch_size=128)
        x_test_adv = attack.generate(self.x_test_iris)
        self.assertFalse((self.x_test_iris == x_test_adv).all())

        preds_adv = np.argmax(classifier.predict(x_test_adv), axis=1)
        self.assertFalse((np.argmax(self.y_test_iris,
                                    axis=1) == preds_adv).all())
        acc = np.sum(preds_adv == np.argmax(
            self.y_test_iris, axis=1)) / self.y_test_iris.shape[0]
        logger.info(
            "Accuracy on Iris with NewtonFool adversarial examples: %.2f%%",
            (acc * 100))