def test_keras_classifier(self):
        """
        Second test with the KerasClassifier.
        :return:
        """
        x_test_original = self.x_test_mnist.copy()

        # Build KerasClassifier
        krc = get_image_classifier_kr()

        # Attack
        attack_st = SpatialTransformation(
            krc, max_translation=10.0, num_translations=3, max_rotation=30.0, num_rotations=3
        )
        x_train_adv = attack_st.generate(self.x_train_mnist)

        self.assertAlmostEqual(x_train_adv[0, 8, 13, 0], 0.49004024, delta=0.01)
        self.assertAlmostEqual(attack_st.fooling_rate, 0.71, delta=0.02)

        self.assertEqual(attack_st.attack_trans_x, 3)
        self.assertEqual(attack_st.attack_trans_y, 3)
        self.assertEqual(attack_st.attack_rot, 30.0)

        x_test_adv = attack_st.generate(self.x_test_mnist)

        self.assertAlmostEqual(x_test_adv[0, 14, 14, 0], 0.013572651, delta=0.01)

        # Check that x_test has not been modified by attack and classifier
        self.assertAlmostEqual(float(np.max(np.abs(x_test_original - self.x_test_mnist))), 0.0, delta=0.00001)

        k.clear_session()
    def test_tensorflow_classifier(self):
        """
        First test with the TensorFlowClassifier.
        :return:
        """
        x_test_original = self.x_test_mnist.copy()

        # Build TensorFlowClassifier
        tfc, sess = get_image_classifier_tf()

        # Attack
        attack_st = SpatialTransformation(
            tfc, max_translation=10.0, num_translations=3, max_rotation=30.0, num_rotations=3
        )
        x_train_adv = attack_st.generate(self.x_train_mnist)

        self.assertAlmostEqual(x_train_adv[0, 8, 13, 0], 0.49004024, delta=0.01)
        self.assertAlmostEqual(attack_st.fooling_rate, 0.71, delta=0.02)

        self.assertEqual(attack_st.attack_trans_x, 3)
        self.assertEqual(attack_st.attack_trans_y, 3)
        self.assertEqual(attack_st.attack_rot, 30.0)

        x_test_adv = attack_st.generate(self.x_test_mnist)

        self.assertAlmostEqual(x_test_adv[0, 14, 14, 0], 0.013572651, delta=0.01)

        # Check that x_test has not been modified by attack and classifier
        self.assertAlmostEqual(float(np.max(np.abs(x_test_original - self.x_test_mnist))), 0.0, delta=0.00001)

        if sess is not None:
            sess.close()
    def test_pytorch_classifier(self):
        """
        Third test with the PyTorchClassifier.
        :return:
        """
        x_train_mnist = np.reshape(self.x_train_mnist, (self.x_train_mnist.shape[0], 1, 28, 28)).astype(np.float32)
        x_test_mnist = np.reshape(self.x_test_mnist, (self.x_test_mnist.shape[0], 1, 28, 28)).astype(np.float32)
        x_test_original = x_test_mnist.copy()

        # Build PyTorchClassifier
        ptc = get_image_classifier_pt(from_logits=True)

        # Attack
        attack_st = SpatialTransformation(
            ptc, max_translation=10.0, num_translations=3, max_rotation=30.0, num_rotations=3
        )
        x_train__mnistadv = attack_st.generate(x_train_mnist)

        self.assertAlmostEqual(x_train__mnistadv[0, 0, 13, 18], 0.627451, delta=0.01)
        self.assertAlmostEqual(attack_st.fooling_rate, 0.57, delta=0.03)

        self.assertEqual(attack_st.attack_trans_x, 0)
        self.assertEqual(attack_st.attack_trans_y, 3)
        self.assertEqual(attack_st.attack_rot, 0.0)

        x_test_adv = attack_st.generate(x_test_mnist)

        self.assertLessEqual(abs(x_test_adv[0, 0, 14, 14] - 0.008591662), 0.01)

        # Check that x_test has not been modified by attack and classifier
        self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test_mnist))), 0.0, delta=0.00001)
    def test_failure_feature_vectors(self):
        attack_params = {"max_translation": 10.0, "num_translations": 3, "max_rotation": 30.0, "num_rotations": 3}
        classifier = get_tabular_classifier_kr()
        attack = SpatialTransformation(classifier=classifier)
        attack.set_params(**attack_params)
        data = np.random.rand(10, 4)

        # Assert that value error is raised for feature vectors
        with self.assertRaises(ValueError) as context:
            attack.generate(data)

        self.assertIn("Feature vectors detected.", str(context.exception))
示例#5
0
def _spatial(model, data, labels, attack_args):
    max_translation = attack_args.get('max_translation', 0.2)
    num_translations = attack_args.get('num_translations', 1)
    max_rotation = attack_args.get('max_rotation', 10)
    num_rotations = attack_args.get('num_rotations', 1)
    print('>>> Generating SpatialTransformation examples.')
    attacker = SpatialTransformation(classifier=model,
                                     max_translation=max_translation,
                                     num_translations=num_translations,
                                     max_rotation=max_rotation,
                                     num_rotations=num_rotations)
    return attacker.generate(data, labels)
示例#6
0
def _spatial(model, data, labels, attack_args):
    max_translation = attack_args.get('max_translation', 0.2)
    num_translations = attack_args.get('num_translations', 10)
    max_rotation = attack_args.get('max_rotation', 15)
    num_rotations = attack_args.get('num_rotations', 10)

    if num_rotations <= 0:
        num_rotations = 1

    if num_translations <= 0:
        num_translations = 1

    attacker = SpatialTransformation(classifier=model,
                                     max_translation=max_translation,
                                     num_translations=num_translations,
                                     max_rotation=max_rotation,
                                     num_rotations=num_rotations)
    return attacker.generate(data, labels)