def _test_backend_mnist(self, classifier, x_train, y_train, x_test,
                            y_test):

        base_success_rate = 0.1
        num_iter = 5
        regularization = 100
        batch_size = 5
        eps = 0.3

        # Test Wasserstein with wasserstein ball and wasserstein norm
        attack = Wasserstein(
            classifier,
            regularization=regularization,
            max_iter=num_iter,
            conjugate_sinkhorn_max_iter=num_iter,
            projected_sinkhorn_max_iter=num_iter,
            norm="wasserstein",
            ball="wasserstein",
            targeted=False,
            p=2,
            eps_iter=2,
            eps_factor=1.05,
            eps=eps,
            eps_step=0.1,
            kernel_size=5,
            batch_size=batch_size,
        )

        x_train_adv = attack.generate(x_train)
        x_test_adv = attack.generate(x_test)

        self.assertFalse((x_train_adv == x_train).all())
        self.assertFalse((x_test_adv == x_test).all())

        train_y_pred = get_labels_np_array(
            classifier.predict(x_train_adv)).astype(float)
        test_y_pred = get_labels_np_array(
            classifier.predict(x_test_adv)).astype(float)

        train_success_rate = (np.sum(
            np.argmax(train_y_pred, axis=1) != np.argmax(
                classifier.predict(x_train), axis=1)) / y_train.shape[0])
        self.assertGreaterEqual(train_success_rate, base_success_rate)

        test_success_rate = (np.sum(
            np.argmax(test_y_pred, axis=1) != np.argmax(
                classifier.predict(x_test), axis=1)) / y_test.shape[0])
        self.assertGreaterEqual(test_success_rate, base_success_rate)
    def test_unsquared_images(self):
        from art.estimators.estimator import (
            BaseEstimator,
            LossGradientsMixin,
            NeuralNetworkMixin,
        )

        from art.estimators.classification.classifier import (
            ClassGradientsMixin,
            ClassifierMixin,
        )

        class DummyClassifier(
            ClassGradientsMixin, ClassifierMixin, NeuralNetworkMixin, LossGradientsMixin, BaseEstimator
        ):
            def __init__(self):
                super(DummyClassifier, self).__init__(model=None, clip_values=None, channels_first=True)
                self._nb_classes = 10

            def class_gradient(self):
                return None

            def fit(self):
                pass

            def loss_gradient(self, x, y):
                return np.random.normal(size=(1, 3, 33, 32))

            def predict(self, x, batch_size=1):
                return np.array([[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]])

            def get_activations(self):
                return None

            def save(self):
                pass

            def loss(self, x, y, **kwargs):
                pass

            def set_learning_phase(self):
                pass

            def input_shape(self):
                pass

        classifier = DummyClassifier()
        attack = Wasserstein(
            classifier,
            regularization=1,
            kernel_size=3,
            max_iter=1,
            conjugate_sinkhorn_max_iter=10,
            projected_sinkhorn_max_iter=10,
        )

        x = np.random.normal(size=(1, 3, 33, 32))
        x_adv = attack.generate(x)

        self.assertTrue(x_adv.shape == x.shape)
示例#3
0
    def _test_backend_mnist(self, classifier, x_train, y_train, x_test, y_test):

        base_success_rate = 0.1
        num_iter = 5
        regularization = 100
        batch_size = 5
        eps = 0.3

        # Test Wasserstein with wasserstein ball and wasserstein norm
        attack = Wasserstein(
            classifier,
            regularization=regularization,
            max_iter=num_iter,
            conjugate_sinkhorn_max_iter=num_iter,
            projected_sinkhorn_max_iter=num_iter,
            norm="wasserstein",
            ball="wasserstein",
            targeted=False,
            p=2,
            eps_iter=2,
            eps_factor=1.05,
            eps=eps,
            eps_step=0.1,
            kernel_size=5,
            batch_size=batch_size,
        )

        x_train_adv = attack.generate(x_train)
        x_test_adv = attack.generate(x_test)

        self.assertFalse((x_train_adv == x_train).all())
        self.assertFalse((x_test_adv == x_test).all())

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv)).astype(float)
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv)).astype(float)

        train_success_rate = (
            np.sum(np.argmax(train_y_pred, axis=1) != np.argmax(classifier.predict(x_train), axis=1)) / y_train.shape[0]
        )
        self.assertGreaterEqual(train_success_rate, base_success_rate)

        test_success_rate = (
            np.sum(np.argmax(test_y_pred, axis=1) != np.argmax(classifier.predict(x_test), axis=1)) / y_test.shape[0]
        )
        self.assertGreaterEqual(test_success_rate, base_success_rate)

        # Test Wasserstein with wasserstein ball and l2 norm
        attack = Wasserstein(
            classifier,
            regularization=regularization,
            max_iter=num_iter,
            conjugate_sinkhorn_max_iter=num_iter,
            projected_sinkhorn_max_iter=num_iter,
            norm="2",
            ball="wasserstein",
            targeted=False,
            p=2,
            eps_iter=2,
            eps_factor=1.05,
            eps=eps,
            eps_step=0.1,
            kernel_size=5,
            batch_size=batch_size,
        )

        x_train_adv = attack.generate(x_train)
        x_test_adv = attack.generate(x_test)

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv)).astype(float)
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv)).astype(float)

        train_success_rate = (
            np.sum(np.argmax(train_y_pred, axis=1) != np.argmax(classifier.predict(x_train), axis=1)) / y_train.shape[0]
        )
        self.assertGreaterEqual(train_success_rate, base_success_rate)

        test_success_rate = (
            np.sum(np.argmax(test_y_pred, axis=1) != np.argmax(classifier.predict(x_test), axis=1)) / y_test.shape[0]
        )
        self.assertGreaterEqual(test_success_rate, 0)

        # Test Wasserstein with wasserstein ball and inf norm
        attack = Wasserstein(
            classifier,
            regularization=regularization,
            max_iter=num_iter,
            conjugate_sinkhorn_max_iter=num_iter,
            projected_sinkhorn_max_iter=num_iter,
            norm="inf",
            ball="wasserstein",
            targeted=False,
            p=2,
            eps_iter=2,
            eps_factor=1.05,
            eps=eps,
            eps_step=0.1,
            kernel_size=5,
            batch_size=batch_size,
        )

        x_train_adv = attack.generate(x_train)
        x_test_adv = attack.generate(x_test)

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv)).astype(float)
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv)).astype(float)

        train_success_rate = (
            np.sum(np.argmax(train_y_pred, axis=1) != np.argmax(classifier.predict(x_train), axis=1)) / y_train.shape[0]
        )
        self.assertGreaterEqual(train_success_rate, base_success_rate)

        test_success_rate = (
            np.sum(np.argmax(test_y_pred, axis=1) != np.argmax(classifier.predict(x_test), axis=1)) / y_test.shape[0]
        )
        self.assertGreaterEqual(test_success_rate, 0)

        # Test Wasserstein with wasserstein ball and l1 norm
        attack = Wasserstein(
            classifier,
            regularization=regularization,
            max_iter=num_iter,
            conjugate_sinkhorn_max_iter=num_iter,
            projected_sinkhorn_max_iter=num_iter,
            norm="1",
            ball="wasserstein",
            targeted=False,
            p=2,
            eps_iter=2,
            eps_factor=1.05,
            eps=eps,
            eps_step=0.1,
            kernel_size=5,
            batch_size=batch_size,
        )

        x_train_adv = attack.generate(x_train)
        x_test_adv = attack.generate(x_test)

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv)).astype(float)
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv)).astype(float)

        train_success_rate = (
            np.sum(np.argmax(train_y_pred, axis=1) != np.argmax(classifier.predict(x_train), axis=1)) / y_train.shape[0]
        )
        self.assertGreaterEqual(train_success_rate, base_success_rate)

        test_success_rate = (
            np.sum(np.argmax(test_y_pred, axis=1) != np.argmax(classifier.predict(x_test), axis=1)) / y_test.shape[0]
        )
        self.assertGreaterEqual(test_success_rate, 0)

        # Test Wasserstein with l2 ball and wasserstein norm
        attack = Wasserstein(
            classifier,
            regularization=regularization,
            max_iter=num_iter,
            conjugate_sinkhorn_max_iter=num_iter,
            projected_sinkhorn_max_iter=num_iter,
            norm="wasserstein",
            ball="2",
            targeted=False,
            p=2,
            eps_iter=2,
            eps_factor=1.05,
            eps=eps,
            eps_step=0.05,
            kernel_size=5,
            batch_size=batch_size,
        )

        x_train_adv = attack.generate(x_train)
        x_test_adv = attack.generate(x_test)

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv)).astype(float)
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv)).astype(float)

        train_success_rate = (
            np.sum(np.argmax(train_y_pred, axis=1) != np.argmax(classifier.predict(x_train), axis=1)) / y_train.shape[0]
        )
        self.assertGreaterEqual(train_success_rate, 0)

        test_success_rate = (
            np.sum(np.argmax(test_y_pred, axis=1) != np.argmax(classifier.predict(x_test), axis=1)) / y_test.shape[0]
        )
        self.assertGreaterEqual(test_success_rate, 0)

        # Test Wasserstein with l1 ball and wasserstein norm
        attack = Wasserstein(
            classifier,
            regularization=regularization,
            max_iter=num_iter,
            conjugate_sinkhorn_max_iter=num_iter,
            projected_sinkhorn_max_iter=num_iter,
            norm="wasserstein",
            ball="1",
            targeted=False,
            p=2,
            eps_iter=2,
            eps_factor=1.05,
            eps=eps,
            eps_step=0.1,
            kernel_size=5,
            batch_size=batch_size,
        )

        x_train_adv = attack.generate(x_train)
        x_test_adv = attack.generate(x_test)

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv)).astype(float)
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv)).astype(float)

        train_success_rate = (
            np.sum(np.argmax(train_y_pred, axis=1) != np.argmax(classifier.predict(x_train), axis=1)) / y_train.shape[0]
        )
        self.assertGreaterEqual(train_success_rate, 0)

        test_success_rate = (
            np.sum(np.argmax(test_y_pred, axis=1) != np.argmax(classifier.predict(x_test), axis=1)) / y_test.shape[0]
        )
        self.assertGreaterEqual(test_success_rate, 0)

        # Test Wasserstein with inf ball and Wasserstein norm
        attack = Wasserstein(
            classifier,
            regularization=regularization,
            max_iter=num_iter,
            conjugate_sinkhorn_max_iter=num_iter,
            projected_sinkhorn_max_iter=num_iter,
            norm="wasserstein",
            ball="inf",
            targeted=False,
            p=2,
            eps_iter=2,
            eps_factor=1.05,
            eps=eps,
            eps_step=0.1,
            kernel_size=5,
            batch_size=batch_size,
        )

        x_train_adv = attack.generate(x_train)
        x_test_adv = attack.generate(x_test)

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv)).astype(float)
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv)).astype(float)

        train_success_rate = (
            np.sum(np.argmax(train_y_pred, axis=1) != np.argmax(classifier.predict(x_train), axis=1)) / y_train.shape[0]
        )
        self.assertGreaterEqual(train_success_rate, base_success_rate)

        test_success_rate = (
            np.sum(np.argmax(test_y_pred, axis=1) != np.argmax(classifier.predict(x_test), axis=1)) / y_test.shape[0]
        )
        self.assertGreaterEqual(test_success_rate, base_success_rate)

        # Test Wasserstein with targeted attack
        master_seed(1234)
        attack = Wasserstein(
            classifier,
            regularization=regularization,
            max_iter=num_iter,
            conjugate_sinkhorn_max_iter=num_iter,
            projected_sinkhorn_max_iter=num_iter,
            norm="wasserstein",
            ball="wasserstein",
            targeted=True,
            p=2,
            eps_iter=2,
            eps_factor=1.05,
            eps=eps,
            eps_step=0.1,
            kernel_size=5,
            batch_size=batch_size,
        )

        train_y_rand = random_targets(y_train, nb_classes=10)
        test_y_rand = random_targets(y_test, nb_classes=10)

        x_train_adv = attack.generate(x_train, train_y_rand)
        x_test_adv = attack.generate(x_test, test_y_rand)

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv)).astype(float)
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv)).astype(float)

        train_success_rate = (
            np.sum(np.argmax(train_y_pred, axis=1) == np.argmax(train_y_rand, axis=1)) / y_train.shape[0]
        )
        self.assertGreaterEqual(train_success_rate, base_success_rate)

        test_success_rate = np.sum(np.argmax(test_y_pred, axis=1) == np.argmax(test_y_rand, axis=1)) / y_test.shape[0]
        self.assertGreaterEqual(test_success_rate, 0)

        # Test Wasserstein with p-wasserstein=1 and kernel_size=3
        attack = Wasserstein(
            classifier,
            regularization=regularization,
            max_iter=num_iter,
            conjugate_sinkhorn_max_iter=num_iter,
            projected_sinkhorn_max_iter=num_iter,
            norm="wasserstein",
            ball="wasserstein",
            targeted=False,
            p=1,
            eps_iter=2,
            eps_factor=1.05,
            eps=eps,
            eps_step=0.1,
            kernel_size=3,
            batch_size=batch_size,
        )

        x_train_adv = attack.generate(x_train)
        x_test_adv = attack.generate(x_test)

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv)).astype(float)
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv)).astype(float)

        train_success_rate = (
            np.sum(np.argmax(train_y_pred, axis=1) != np.argmax(classifier.predict(x_train), axis=1)) / y_train.shape[0]
        )
        self.assertTrue(train_success_rate >= base_success_rate)

        test_success_rate = (
            np.sum(np.argmax(test_y_pred, axis=1) != np.argmax(classifier.predict(x_test), axis=1)) / y_test.shape[0]
        )
        self.assertTrue(test_success_rate >= base_success_rate)