def test_failure_attack(self): """ Test the corner case when attack fails. :return: """ # Build TFClassifier tfc, sess = get_classifier_tf() # Get MNIST (_, _), (x_test, y_test) = self.mnist # Failure attack ead = ElasticNet(classifier=tfc, targeted=True, max_iter=0, binary_search_steps=0, learning_rate=0, initial_const=1) params = {'y': random_targets(y_test, tfc.nb_classes)} x_test_adv = ead.generate(x_test, **params) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) np.testing.assert_almost_equal(x_test, x_test_adv, 3) # Kill TF sess.close() tf.reset_default_graph()
def test_iris_pt(self): (_, _), (x_test, y_test) = self.iris classifier = get_iris_classifier_pt() attack = ElasticNet(classifier, targeted=False, max_iter=10) x_test_adv = attack.generate(x_test) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1).all()) self.assertTrue((x_test_adv >= 0).all()) preds_adv = np.argmax(classifier.predict(x_test_adv), axis=1) self.assertFalse((np.argmax(y_test, axis=1) == preds_adv).all()) acc = 1. - np.sum( preds_adv == np.argmax(y_test, axis=1)) / y_test.shape[0] logger.info('EAD success rate on Iris: %.2f%%', (acc * 100))
def test_keras_iris_clipped(self): (_, _), (x_test, y_test) = self.iris classifier = get_iris_classifier_kr() attack = ElasticNet(classifier, targeted=False, max_iter=10) x_test_adv = attack.generate(x_test) expected_x_test_adv = np.asarray([0.85931635, 0.44633555, 0.65658355, 0.23840423]) np.testing.assert_array_almost_equal(x_test_adv[0, :], expected_x_test_adv, decimal=6) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) predictions_adv = np.argmax(classifier.predict(x_test_adv), axis=1) np.testing.assert_array_equal(predictions_adv, np.asarray([1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 2, 0, 2, 2, 1, 1, 2])) accuracy = 1.0 - np.sum(predictions_adv == np.argmax(y_test, axis=1)) / y_test.shape[0] logger.info('EAD success rate on Iris: %.2f%%', (accuracy * 100))
def test_keras_iris_unbounded(self): (_, _), (x_test, y_test) = self.iris classifier = get_iris_classifier_kr() # Recreate a classifier without clip values classifier = KerasClassifier(model=classifier._model, use_logits=False, channel_index=1) attack = ElasticNet(classifier, targeted=False, max_iter=10) x_test_adv = attack.generate(x_test) expected_x_test_adv = np.asarray([0.85931635, 0.44633555, 0.65658355, 0.23840423]) np.testing.assert_array_almost_equal(x_test_adv[0, :], expected_x_test_adv, decimal=6) predictions_adv = np.argmax(classifier.predict(x_test_adv), axis=1) np.testing.assert_array_equal(predictions_adv, np.asarray([1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 2, 0, 2, 2, 1, 1, 2])) accuracy = 1.0 - np.sum(predictions_adv == np.argmax(y_test, axis=1)) / y_test.shape[0] logger.info('EAD success rate on Iris: %.2f%%', (accuracy * 100))
def test_failure_attack(self): """ Test the corner case when attack fails. :return: """ # Build a TFClassifier # Define input and output placeholders input_ph = tf.placeholder(tf.float32, shape=[None, 28, 28, 1]) output_ph = tf.placeholder(tf.int32, shape=[None, 10]) # Define the tensorflow graph conv = tf.layers.conv2d(input_ph, 4, 5, activation=tf.nn.relu) conv = tf.layers.max_pooling2d(conv, 2, 2) fc = tf.contrib.layers.flatten(conv) # Logits layer logits = tf.layers.dense(fc, 10) # Train operator loss = tf.reduce_mean(tf.losses.softmax_cross_entropy(logits=logits, onehot_labels=output_ph)) optimizer = tf.train.AdamOptimizer(learning_rate=0.01) train = optimizer.minimize(loss) # Tensorflow session and initialization sess = tf.Session() sess.run(tf.global_variables_initializer()) # Get MNIST (x_train, y_train), (x_test, y_test) = self.mnist # Train the classifier tfc = TFClassifier((0, 1), input_ph, logits, output_ph, train, loss, None, sess) tfc.fit(x_train, y_train, batch_size=BATCH_SIZE, nb_epochs=10) # Failure attack ead = ElasticNet(classifier=tfc, targeted=True, max_iter=0, binary_search_steps=0, learning_rate=0, initial_const=1) params = {'y': random_targets(y_test, tfc.nb_classes)} x_test_adv = ead.generate(x_test, **params) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) np.testing.assert_almost_equal(x_test, x_test_adv, 3) # Kill TF sess.close() tf.reset_default_graph()
def test_iris_k_unbounded(self): (_, _), (x_test, y_test) = self.iris classifier, _ = get_iris_classifier_kr() # Recreate a classifier without clip values classifier = KerasClassifier(model=classifier._model, use_logits=False, channel_index=1) attack = ElasticNet(classifier, targeted=False, max_iter=10) x_test_adv = attack.generate(x_test) self.assertFalse((x_test == x_test_adv).all()) preds_adv = np.argmax(classifier.predict(x_test_adv), axis=1) self.assertFalse((np.argmax(y_test, axis=1) == preds_adv).all()) acc = 1. - np.sum( preds_adv == np.argmax(y_test, axis=1)) / y_test.shape[0] logger.info('EAD success rate on Iris: %.2f%%', (acc * 100))
def test_pytorch_iris(self): (_, _), (x_test, y_test) = self.iris classifier = get_iris_classifier_pt() attack = ElasticNet(classifier, targeted=False, max_iter=10) x_test_adv = attack.generate(x_test.astype(np.float32)) expected_x_test_adv = np.asarray([0.8479194, 0.42525578, 0.70166135, 0.28664517]) np.testing.assert_array_almost_equal(x_test_adv[0, :], expected_x_test_adv, decimal=6) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) predictions_adv = np.argmax(classifier.predict(x_test_adv), axis=1) np.testing.assert_array_equal(predictions_adv, np.asarray( [1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 0, 2, 2, 1, 2, 0, 2, 2, 1, 1, 2])) accuracy = 1.0 - np.sum(predictions_adv == np.argmax(y_test, axis=1)) / y_test.shape[0] logger.info('EAD success rate on Iris: %.2f%%', (accuracy * 100))
def GetAttackers(classifier, x_test, attacker_name): """ Function: Load classifier and generate adversarial samples """ t_start = time.time() if attacker_name == "FGSM": attacker = FastGradientMethod(classifier=classifier, eps=0.3) elif attacker_name == "Elastic": attacker = ElasticNet(classifier=classifier, confidence=0.5) elif attacker_name == "BasicIterativeMethod": attacker = BasicIterativeMethod(classifier=classifier, eps=0.3) elif attacker_name == "NewtonFool": attacker = NewtonFool(classifier=classifier, max_iter=20) elif attacker_name == "HopSkipJump": attacker = HopSkipJump(classifier=classifier, max_iter=20) elif attacker_name == "ZooAttack": attacker = ZooAttack(classifier=classifier, max_iter=20) elif attacker_name == "VirtualAdversarialMethod": attacker = VirtualAdversarialMethod(classifier=classifier, max_iter=20) elif attacker_name == "UniversalPerturbation": attacker = UniversalPerturbation(classifier=classifier, max_iter=20) elif attacker_name == "AdversarialPatch": attacker = AdversarialPatch(classifier=classifier, max_iter=20) elif attacker_name == "Attack": attacker = Attack(classifier=classifier) elif attacker_name == "BoundaryAttack": attacker = BoundaryAttack(classifier=classifier, targeted=False, epsilon=0.05, max_iter=20) #, max_iter=20 elif attacker_name == "CarliniL2": attacker = CarliniL2Method(classifier=classifier, confidence=0.5, learning_rate=0.001, max_iter=15) elif attacker_name == "CarliniLinf": attacker = CarliniLInfMethod(classifier=classifier, confidence=0.5, learning_rate=0.001, max_iter=15) elif attacker_name == "DeepFool": attacker = DeepFool(classifier) elif attacker_name == "SMM": attacker = SaliencyMapMethod(classifier=classifier, theta=2) elif attacker_name == "PGD": attacker = ProjectedGradientDescent(classifier=classifier, norm=2, eps=1, eps_step=0.5) else: raise ValueError("Please get the right attacker's name for the input.") test_adv = attacker.generate(x_test) dt = time.time() - t_start return test_adv, dt
def test_tensorflow_failure_attack(self): """ Test the corner case when attack fails. :return: """ (_, _), (x_test, y_test) = self.mnist # Build TensorFlowClassifier tfc, sess = get_classifier_tf() # Failure attack ead = ElasticNet(classifier=tfc, targeted=True, max_iter=0, binary_search_steps=0, learning_rate=0, initial_const=1) params = {'y': random_targets(y_test, tfc.nb_classes())} x_test_adv = ead.generate(x_test, **params) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) np.testing.assert_almost_equal(x_test, x_test_adv, 3) # Clean-up session sess.close()
def test_classifier_type_check_fail_gradients(self): # Use a test classifier not providing gradients required by white-box attack from art.classifiers.scikitlearn import ScikitlearnDecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier classifier = ScikitlearnDecisionTreeClassifier(model=DecisionTreeClassifier()) with self.assertRaises(TypeError) as context: _ = ElasticNet(classifier=classifier) self.assertIn('For `ElasticNet` classifier must be an instance of ' '`art.classifiers.classifier.ClassifierGradients`, the provided classifier is instance of ' '(<class \'art.classifiers.scikitlearn.ScikitlearnClassifier\'>,).', str(context.exception))
def test_classifier_type_check_fail_classifier(self): # Use a useless test classifier to test basic classifier properties class ClassifierNoAPI: pass classifier = ClassifierNoAPI with self.assertRaises(TypeError) as context: _ = ElasticNet(classifier=classifier) self.assertIn('For `ElasticNet` classifier must be an instance of ' '`art.classifiers.classifier.Classifier`, the provided classifier is instance of ' '(<class \'object\'>,).', str(context.exception))
def test_ptclassifier(self): """ Third test with the PyTorchClassifier. :return: """ # Build PyTorchClassifier ptc = get_classifier_pt() # Get MNIST (_, _), (x_test, y_test) = self.mnist x_test = np.swapaxes(x_test, 1, 3) # First attack ead = ElasticNet(classifier=ptc, targeted=True, max_iter=2) params = {'y': random_targets(y_test, ptc.nb_classes)} x_test_adv = ead.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(ptc.predict(x_test_adv), axis=1) self.assertTrue((target == y_pred_adv).any()) # Second attack ead = ElasticNet(classifier=ptc, targeted=False, max_iter=2) params = {'y': random_targets(y_test, ptc.nb_classes)} x_test_adv = ead.generate(x_test, **params) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(ptc.predict(x_test_adv), axis=1) self.assertTrue((target != y_pred_adv).any())
def test_iris_tf(self): (_, _), (x_test, y_test) = self.iris classifier, _ = get_iris_classifier_tf() # Test untargeted attack attack = ElasticNet(classifier, targeted=False, max_iter=10) x_test_adv = attack.generate(x_test) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1).all()) self.assertTrue((x_test_adv >= 0).all()) preds_adv = np.argmax(classifier.predict(x_test_adv), axis=1) self.assertFalse((np.argmax(y_test, axis=1) == preds_adv).all()) acc = 1. - np.sum( preds_adv == np.argmax(y_test, axis=1)) / y_test.shape[0] logger.info('EAD success rate on Iris: %.2f%%', (acc * 100)) # Test targeted attack targets = random_targets(y_test, nb_classes=3) attack = ElasticNet(classifier, targeted=True, max_iter=10) x_test_adv = attack.generate(x_test, **{'y': targets}) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1).all()) self.assertTrue((x_test_adv >= 0).all()) preds_adv = np.argmax(classifier.predict(x_test_adv), axis=1) self.assertTrue((np.argmax(targets, axis=1) == preds_adv).any()) acc = np.sum(preds_adv == np.argmax(targets, axis=1)) / y_test.shape[0] logger.info('Targeted EAD success rate on Iris: %.2f%%', (acc * 100))
def test_tensorflow_iris(self): (_, _), (x_test, y_test) = self.iris classifier, _ = get_iris_classifier_tf() # Test untargeted attack attack = ElasticNet(classifier, targeted=False, max_iter=10) x_test_adv = attack.generate(x_test) expected_x_test_adv = np.asarray([0.8479195, 0.42525578, 0.70166135, 0.28664514]) np.testing.assert_array_almost_equal(x_test_adv[0, :], expected_x_test_adv, decimal=6) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) predictions_adv = np.argmax(classifier.predict(x_test_adv), axis=1) np.testing.assert_array_equal(predictions_adv, np.asarray( [1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 0, 2, 2, 1, 2, 0, 2, 2, 1, 1, 2])) accuracy = 1.0 - np.sum(predictions_adv == np.argmax(y_test, axis=1)) / y_test.shape[0] logger.info('EAD success rate on Iris: %.2f%%', (accuracy * 100)) # Test targeted attack targets = random_targets(y_test, nb_classes=3) attack = ElasticNet(classifier, targeted=True, max_iter=10) x_test_adv = attack.generate(x_test, **{'y': targets}) expected_x_test_adv = np.asarray([0.8859426, 0.51877, 0.5014498, 0.05447771]) np.testing.assert_array_almost_equal(x_test_adv[0, :], expected_x_test_adv, decimal=6) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) predictions_adv = np.argmax(classifier.predict(x_test_adv), axis=1) np.testing.assert_array_equal(predictions_adv, np.asarray( [0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 0, 0, 2, 2, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 2, 0, 2, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 0, 2])) accuracy = np.sum(predictions_adv == np.argmax(targets, axis=1)) / y_test.shape[0] logger.info('Targeted EAD success rate on Iris: %.2f%%', (accuracy * 100))
def test_scikitlearn(self): from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from art.classifiers.scikitlearn import SklearnClassifier scikitlearn_test_cases = [ LogisticRegression(solver="lbfgs", multi_class="auto"), SVC(gamma="auto"), LinearSVC(), ] x_test_original = self.x_test_iris.copy() for model in scikitlearn_test_cases: classifier = SklearnClassifier(model=model, clip_values=(0, 1)) classifier.fit(x=self.x_test_iris, y=self.y_test_iris) # Test untargeted attack attack = ElasticNet(classifier, targeted=False, max_iter=2) x_test_adv = attack.generate(self.x_test_iris) self.assertFalse((self.x_test_iris == x_test_adv).all()) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) predictions_adv = np.argmax(classifier.predict(x_test_adv), axis=1) self.assertFalse((np.argmax(self.y_test_iris, axis=1) == predictions_adv).all()) accuracy = 1.0 - np.sum(predictions_adv == np.argmax( self.y_test_iris, axis=1)) / self.y_test_iris.shape[0] logger.info( "EAD success rate of " + classifier.__class__.__name__ + " on Iris: %.2f%%", (accuracy * 100)) # Test targeted attack targets = random_targets(self.y_test_iris, nb_classes=3) attack = ElasticNet(classifier, targeted=True, max_iter=2) x_test_adv = attack.generate(self.x_test_iris, **{"y": targets}) self.assertFalse((self.x_test_iris == x_test_adv).all()) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) predictions_adv = np.argmax(classifier.predict(x_test_adv), axis=1) self.assertTrue((np.argmax(targets, axis=1) == predictions_adv).any()) accuracy = np.sum(predictions_adv == np.argmax( targets, axis=1)) / self.y_test_iris.shape[0] logger.info( "Targeted EAD success rate of " + classifier.__class__.__name__ + " on Iris: %.2f%%", (accuracy * 100)) # Check that x_test has not been modified by attack and classifier self.assertAlmostEqual(float( np.max(np.abs(x_test_original - self.x_test_iris))), 0.0, delta=0.00001)
def test_krclassifier(self): """ Second test with the KerasClassifier. :return: """ # Initialize a tf session session = tf.Session() k.set_session(session) # Get MNIST (x_train, y_train), (x_test, y_test) = self.mnist # Create simple CNN model = Sequential() model.add(Conv2D(4, kernel_size=(5, 5), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(10, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(lr=0.01), metrics=['accuracy']) # Get classifier krc = KerasClassifier((0, 1), model, use_logits=False) krc.fit(x_train, y_train, batch_size=BATCH_SIZE, nb_epochs=10) # First attack ead = ElasticNet(classifier=krc, targeted=True, max_iter=2) params = {'y': random_targets(y_test, krc.nb_classes)} x_test_adv = ead.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1) logger.debug('EAD Target: %s', target) logger.debug('EAD Actual: %s', y_pred_adv) logger.info('EAD Success Rate: %.2f', (sum(target == y_pred_adv) / float(len(target)))) self.assertTrue((target == y_pred_adv).any()) # Second attack ead = ElasticNet(classifier=krc, targeted=False, max_iter=2) params = {'y': random_targets(y_test, krc.nb_classes)} x_test_adv = ead.generate(x_test, **params) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1) logger.debug('EAD Target: %s', target) logger.debug('EAD Actual: %s', y_pred_adv) logger.info('EAD Success Rate: %.2f', (sum(target != y_pred_adv) / float(len(target)))) self.assertTrue((target != y_pred_adv).any()) # Kill Keras k.clear_session()
def test_keras_mnist(self): """ Second test with the KerasClassifier. :return: """ (_, _), (x_test, y_test) = self.mnist x_test_original = x_test.copy() # Build KerasClassifier krc = get_classifier_kr() # First attack ead = ElasticNet(classifier=krc, targeted=True, max_iter=2) y_target = to_categorical(np.asarray([6, 6, 7, 4, 9, 7, 9, 0, 1, 0]), nb_classes=10) x_test_adv = ead.generate(x_test, y=y_target) expected_x_test_adv = np.asarray([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00183569, 0.0, 0.0, 0.49765405, 1., 0.6467149, 0.0033755, 0.0052456, 0.0, 0.01104407, 0.00495547, 0.02747423, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) np.testing.assert_array_almost_equal(x_test_adv[2, 14, :, 0], expected_x_test_adv, decimal=6) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) target = np.argmax(y_target, axis=1) y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1) logger.debug('EAD target: %s', target) logger.debug('EAD actual: %s', y_pred_adv) logger.info('EAD success rate: %.2f%%', (100 * sum(target == y_pred_adv) / float(len(target)))) self.assertTrue((target == y_pred_adv).any()) # Second attack ead = ElasticNet(classifier=krc, targeted=False, max_iter=2) y_target = to_categorical(np.asarray([9, 5, 6, 7, 1, 6, 1, 5, 8, 5]), nb_classes=10) x_test_adv = ead.generate(x_test, y=y_target) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1) logger.debug('EAD target: %s', y_target) logger.debug('EAD actual: %s', y_pred_adv) logger.info('EAD success rate: %.2f', (100 * sum(target != y_pred_adv) / float(len(target)))) self.assertTrue((target != y_pred_adv).any()) np.testing.assert_array_equal(y_pred_adv, np.asarray([7, 1, 1, 4, 4, 1, 4, 4, 4, 4])) # Check that x_test has not been modified by attack and classifier self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))), 0.0, delta=0.00001) k.clear_session()
def test_scikitlearn(self): from sklearn.linear_model import LogisticRegression from art.classifiers.scikitlearn import ScikitlearnLogisticRegression scikitlearn_test_cases = {LogisticRegression: ScikitlearnLogisticRegression} # , # SVC: ScikitlearnSVC, # LinearSVC: ScikitlearnSVC} (_, _), (x_test, y_test) = self.iris x_test_original = x_test.copy() for (model_class, classifier_class) in scikitlearn_test_cases.items(): model = model_class() classifier = classifier_class(model=model, clip_values=(0, 1)) classifier.fit(x=x_test, y=y_test) # Test untargeted attack attack = ElasticNet(classifier, targeted=False, max_iter=10) x_test_adv = attack.generate(x_test) self.assertFalse((x_test == x_test_adv).all()) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) predictions_adv = np.argmax(classifier.predict(x_test_adv), axis=1) self.assertFalse((np.argmax(y_test, axis=1) == predictions_adv).all()) accuracy = 1.0 - np.sum(predictions_adv == np.argmax(y_test, axis=1)) / y_test.shape[0] logger.info('EAD success rate of ' + classifier.__class__.__name__ + ' on Iris: %.2f%%', (accuracy * 100)) # Test targeted attack targets = random_targets(y_test, nb_classes=3) attack = ElasticNet(classifier, targeted=True, max_iter=10) x_test_adv = attack.generate(x_test, **{'y': targets}) self.assertFalse((x_test == x_test_adv).all()) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) predictions_adv = np.argmax(classifier.predict(x_test_adv), axis=1) self.assertTrue((np.argmax(targets, axis=1) == predictions_adv).any()) accuracy = np.sum(predictions_adv == np.argmax(targets, axis=1)) / y_test.shape[0] logger.info('Targeted EAD success rate of ' + classifier.__class__.__name__ + ' on Iris: %.2f%%', (accuracy * 100)) # Check that x_test has not been modified by attack and classifier self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))), 0.0, delta=0.00001)
def test_krclassifier(self): """ Second test with the KerasClassifier. :return: """ # Build KerasClassifier krc, sess = get_classifier_kr() # Get MNIST (_, _), (x_test, y_test) = self.mnist # First attack ead = ElasticNet(classifier=krc, targeted=True, max_iter=2) params = {'y': random_targets(y_test, krc.nb_classes)} x_test_adv = ead.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1) logger.debug('EAD target: %s', target) logger.debug('EAD actual: %s', y_pred_adv) logger.info('EAD success rate: %.2f%%', (100 * sum(target == y_pred_adv) / float(len(target)))) self.assertTrue((target == y_pred_adv).any()) # Second attack ead = ElasticNet(classifier=krc, targeted=False, max_iter=2) params = {'y': random_targets(y_test, krc.nb_classes)} x_test_adv = ead.generate(x_test, **params) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1) logger.debug('EAD target: %s', target) logger.debug('EAD actual: %s', y_pred_adv) logger.info('EAD success rate: %.2f', (100 * sum(target != y_pred_adv) / float(len(target)))) self.assertTrue((target != y_pred_adv).any()) # Kill Keras k.clear_session()
def test_ptclassifier(self): """ Third test with the PyTorchClassifier. :return: """ # Get MNIST (x_train, y_train), (x_test, y_test) = self.mnist x_train = np.swapaxes(x_train, 1, 3) x_test = np.swapaxes(x_test, 1, 3) # Define the network model = Model() # Define a loss function and optimizer loss_fn = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.01) # Get classifier ptc = PyTorchClassifier((0, 1), model, loss_fn, optimizer, (1, 28, 28), 10) ptc.fit(x_train, y_train, batch_size=BATCH_SIZE, nb_epochs=10) # First attack ead = ElasticNet(classifier=ptc, targeted=True, max_iter=2) params = {'y': random_targets(y_test, ptc.nb_classes)} x_test_adv = ead.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(ptc.predict(x_test_adv), axis=1) self.assertTrue((target == y_pred_adv).any()) # Second attack ead = ElasticNet(classifier=ptc, targeted=False, max_iter=2) params = {'y': random_targets(y_test, ptc.nb_classes)} x_test_adv = ead.generate(x_test, **params) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(ptc.predict(x_test_adv), axis=1) self.assertTrue((target != y_pred_adv).any())
def test_pytorch_mnist(self): """ Third test with the PyTorchClassifier. :return: """ (_, _), (x_test, y_test) = self.mnist x_test = np.reshape(x_test, (x_test.shape[0], 1, 28, 28)).astype(np.float32) x_test_original = x_test.copy() # Build PyTorchClassifier ptc = get_classifier_pt(from_logits=False) # First attack ead = ElasticNet(classifier=ptc, targeted=True, max_iter=2) params = {'y': random_targets(y_test, ptc.nb_classes())} x_test_adv = ead.generate(x_test, **params) expected_x_test_adv = np.asarray([0.01678124, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00665895, 0.0, 0.11374763, 0.36250514, 0.5472948, 0.9308808, 1.0, 0.99920374, 0.86274165, 0.6346757, 0.5597227, 0.24191494, 0.25882354, 0.0091916, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) np.testing.assert_array_almost_equal(x_test_adv[2, 0, :, 14], expected_x_test_adv, decimal=6) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(ptc.predict(x_test_adv), axis=1) self.assertTrue((target == y_pred_adv).any()) # Second attack ead = ElasticNet(classifier=ptc, targeted=False, max_iter=2) params = {'y': random_targets(y_test, ptc.nb_classes())} x_test_adv = ead.generate(x_test, **params) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(ptc.predict(x_test_adv), axis=1) self.assertTrue((target != y_pred_adv).any()) np.testing.assert_array_equal(y_pred_adv, np.asarray([7, 1, 1, 4, 4, 1, 4, 4, 4, 4])) # Check that x_test has not been modified by attack and classifier self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))), 0.0, delta=0.00001)
def test_tensorflow_mnist(self): """ First test with the TensorFlowClassifier. :return: """ x_test_original = self.x_test_mnist.copy() # Build TensorFlowClassifier tfc, sess = get_image_classifier_tf(from_logits=True) # First attack ead = ElasticNet(classifier=tfc, targeted=True, max_iter=2) params = {"y": random_targets(self.y_test_mnist, tfc.nb_classes())} x_test_adv = ead.generate(self.x_test_mnist, **params) expected_x_test_adv = np.asarray([ 0.45704955, 0.43627003, 0.57238287, 1.0, 0.11541145, 0.12619308, 0.48318917, 0.3457903, 0.17863746, 0.09060935, 0.0, 0.00963121, 0.0, 0.04749763, 0.4058206, 0.17860745, 0.0, 0.9153206, 0.84564775, 0.20603634, 0.10586322, 0.00947509, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ]) np.testing.assert_array_almost_equal(x_test_adv[0, 14, :, 0], expected_x_test_adv, decimal=6) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) target = np.argmax(params["y"], axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug("EAD target: %s", target) logger.debug("EAD actual: %s", y_pred_adv) logger.info("EAD success rate on MNIST: %.2f%%", (100 * sum(target == y_pred_adv) / len(target))) self.assertTrue((target == y_pred_adv).any()) # Second attack ead = ElasticNet(classifier=tfc, targeted=False, max_iter=2) params = {"y": random_targets(self.y_test_mnist, tfc.nb_classes())} x_test_adv = ead.generate(self.x_test_mnist, **params) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) target = np.argmax(params["y"], axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug("EAD target: %s", target) logger.debug("EAD actual: %s", y_pred_adv) logger.info("EAD success rate on MNIST: %.2f%%", (100 * sum(target != y_pred_adv) / float(len(target)))) np.testing.assert_array_equal( y_pred_adv, np.asarray([7, 1, 1, 4, 4, 1, 4, 4, 4, 4])) # Third attack ead = ElasticNet(classifier=tfc, targeted=False, max_iter=2) params = {} x_test_adv = ead.generate(self.x_test_mnist, **params) expected_x_test_adv = np.asarray([ 0.22866514, 0.21826893, 0.22902338, 0.06268515, 0.0, 0.0, 0.04822975, 0.0, 0.0, 0.0, 0.05555382, 0.0, 0.0, 0.0, 0.38986346, 0.10653087, 0.32385707, 0.98043066, 0.75790393, 0.16486718, 0.16069527, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ]) np.testing.assert_array_almost_equal(x_test_adv[0, 14, :, 0], expected_x_test_adv, decimal=6) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) y_pred = np.argmax(tfc.predict(self.x_test_mnist), axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug("EAD target: %s", y_pred) logger.debug("EAD actual: %s", y_pred_adv) logger.info("EAD success rate: %.2f%%", (100 * sum(y_pred != y_pred_adv) / float(len(y_pred)))) np.testing.assert_array_equal( y_pred_adv, np.asarray([0, 4, 7, 9, 0, 7, 7, 3, 0, 7])) # First attack without batching ead_wob = ElasticNet(classifier=tfc, targeted=True, max_iter=2, batch_size=1) params = {"y": random_targets(self.y_test_mnist, tfc.nb_classes())} x_test_adv = ead_wob.generate(self.x_test_mnist, **params) expected_x_test_adv = np.asarray([ 0.3287169, 0.31374657, 0.42853343, 0.8994576, 0.19850709, 0.11997936, 0.5622535, 0.43854535, 0.19387433, 0.12516324, 0.0, 0.10933565, 0.02162433, 0.07120894, 0.95224255, 0.3072921, 0.48966524, 1.0, 0.3814998, 0.15782641, 0.52283823, 0.12852049, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ]) np.testing.assert_array_almost_equal(x_test_adv[0, 14, :, 0], expected_x_test_adv, decimal=6) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) target = np.argmax(params["y"], axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug("EAD target: %s", target) logger.debug("EAD actual: %s", y_pred_adv) logger.info("EAD success rate: %.2f%%", (100 * sum(target == y_pred_adv) / float(len(target)))) self.assertTrue((target == y_pred_adv).any()) # Second attack without batching ead_wob = ElasticNet(classifier=tfc, targeted=False, max_iter=2, batch_size=1) params = {"y": random_targets(self.y_test_mnist, tfc.nb_classes())} x_test_adv = ead_wob.generate(self.x_test_mnist, **params) self.assertLessEqual(np.amax(x_test_adv), 1.0) self.assertGreaterEqual(np.amin(x_test_adv), 0.0) target = np.argmax(params["y"], axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug("EAD target: %s", target) logger.debug("EAD actual: %s", y_pred_adv) logger.info("EAD success rate: %.2f%%", (100 * sum(target != y_pred_adv) / float(len(target)))) np.testing.assert_array_equal( y_pred_adv, np.asarray([7, 1, 1, 4, 4, 1, 4, 4, 4, 4])) # Check that x_test has not been modified by attack and classifier self.assertAlmostEqual(float( np.max(np.abs(x_test_original - self.x_test_mnist))), 0.0, delta=0.00001) # Close session if sess is not None: sess.close()
template = 'Epoch {}, Loss: {:4.2f}, Accuracy: {:4.2f}, Test Loss: {:4.2f}, Test Accuracy: {:4.2f}' print( template.format(epoch + 1, train_loss.result(), train_accuracy.result() * 100, test_loss.result(), test_accuracy.result() * 100)) y_test_pred = np.argmax(model(x_test), axis=1) accuracy_test = np.sum(y_test_pred == y_test) / y_test.shape[0] print('Accuracy on test data: {:4.2f}%'.format(accuracy_test * 100)) classifier = TensorFlowV2Classifier(model=model, nb_classes=10, loss_object=loss_object, clip_values=(0, 1), channel_index=3) attack_fgsm = FastGradientMethod(classifier=classifier) fgsm_test_adv = attack_fgsm.generate(x_test) attack_elastic = ElasticNet(classifier=classifier) elastic_test_adv = attack_elastic.generate(x_test) fig = plt.figure() ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) ax1.imshow(fgsm_test_adv[0, :, :, 0]) ax2.imshow(elastic_test_adv[0, :, :, 0]) plt.show()
def test_tfclassifier(self): """ First test with the TFClassifier. :return: """ # Build a TFClassifier # Define input and output placeholders input_ph = tf.placeholder(tf.float32, shape=[None, 28, 28, 1]) output_ph = tf.placeholder(tf.int32, shape=[None, 10]) # Define the tensorflow graph conv = tf.layers.conv2d(input_ph, 4, 5, activation=tf.nn.relu) conv = tf.layers.max_pooling2d(conv, 2, 2) fc = tf.contrib.layers.flatten(conv) # Logits layer logits = tf.layers.dense(fc, 10) # Train operator loss = tf.reduce_mean(tf.losses.softmax_cross_entropy(logits=logits, onehot_labels=output_ph)) optimizer = tf.train.AdamOptimizer(learning_rate=0.01) train = optimizer.minimize(loss) # Tensorflow session and initialization sess = tf.Session() sess.run(tf.global_variables_initializer()) # Get MNIST (x_train, y_train), (x_test, y_test) = self.mnist # Train the classifier tfc = TFClassifier((0, 1), input_ph, logits, output_ph, train, loss, None, sess) tfc.fit(x_train, y_train, batch_size=BATCH_SIZE, nb_epochs=10) # First attack ead = ElasticNet(classifier=tfc, targeted=True, max_iter=2) params = {'y': random_targets(y_test, tfc.nb_classes)} x_test_adv = ead.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug('EAD Target: %s', target) logger.debug('EAD Actual: %s', y_pred_adv) logger.info('EAD Success Rate: %.2f', (sum(target == y_pred_adv) / float(len(target)))) self.assertTrue((target == y_pred_adv).any()) # Second attack ead = ElasticNet(classifier=tfc, targeted=False, max_iter=2) params = {'y': random_targets(y_test, tfc.nb_classes)} x_test_adv = ead.generate(x_test, **params) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug('EAD Target: %s', target) logger.debug('EAD Actual: %s', y_pred_adv) logger.info('EAD Success Rate: %.2f', (sum(target != y_pred_adv) / float(len(target)))) self.assertTrue((target != y_pred_adv).any()) # Third attack ead = ElasticNet(classifier=tfc, targeted=False, max_iter=2) params = {} x_test_adv = ead.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) y_pred = np.argmax(tfc.predict(x_test), axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug('EAD Target: %s', y_pred) logger.debug('EAD Actual: %s', y_pred_adv) logger.info('EAD Success Rate: %.2f', (sum(y_pred != y_pred_adv) / float(len(y_pred)))) self.assertTrue((y_pred != y_pred_adv).any()) # First attack without batching ead_wob = ElasticNet(classifier=tfc, targeted=True, max_iter=2, batch_size=1) params = {'y': random_targets(y_test, tfc.nb_classes)} x_test_adv = ead_wob.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug('EAD Target: %s', target) logger.debug('EAD Actual: %s', y_pred_adv) logger.info('EAD Success Rate: %.2f', (sum(target == y_pred_adv) / float(len(target)))) self.assertTrue((target == y_pred_adv).any()) # Second attack without batching ead_wob = ElasticNet(classifier=tfc, targeted=False, max_iter=2, batch_size=1) params = {'y': random_targets(y_test, tfc.nb_classes)} x_test_adv = ead_wob.generate(x_test, **params) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug('EAD Target: %s', target) logger.debug('EAD Actual: %s', y_pred_adv) logger.info('EAD Success Rate: %.2f', (sum(target != y_pred_adv) / float(len(target)))) self.assertTrue((target != y_pred_adv).any()) # Kill TF sess.close() tf.reset_default_graph()
def test_tfclassifier(self): """ First test with the TFClassifier. :return: """ # Build TFClassifier tfc, sess = get_classifier_tf() # Get MNIST (_, _), (x_test, y_test) = self.mnist # First attack ead = ElasticNet(classifier=tfc, targeted=True, max_iter=2) params = {'y': random_targets(y_test, tfc.nb_classes)} x_test_adv = ead.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug('EAD target: %s', target) logger.debug('EAD actual: %s', y_pred_adv) logger.info('EAD success rate on MNIST: %.2f%%', (100 * sum(target == y_pred_adv) / len(target))) self.assertTrue((target == y_pred_adv).any()) # Second attack ead = ElasticNet(classifier=tfc, targeted=False, max_iter=2) params = {'y': random_targets(y_test, tfc.nb_classes)} x_test_adv = ead.generate(x_test, **params) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug('EAD target: %s', target) logger.debug('EAD actual: %s', y_pred_adv) logger.info('EAD success rate on MNIST: %.2f%%', (100 * sum(target != y_pred_adv) / float(len(target)))) self.assertTrue((target != y_pred_adv).any()) # Third attack ead = ElasticNet(classifier=tfc, targeted=False, max_iter=2) params = {} x_test_adv = ead.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) y_pred = np.argmax(tfc.predict(x_test), axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug('EAD target: %s', y_pred) logger.debug('EAD actual: %s', y_pred_adv) logger.info('EAD success rate: %.2f%%', (100 * sum(y_pred != y_pred_adv) / float(len(y_pred)))) self.assertTrue((y_pred != y_pred_adv).any()) # First attack without batching ead_wob = ElasticNet(classifier=tfc, targeted=True, max_iter=2, batch_size=1) params = {'y': random_targets(y_test, tfc.nb_classes)} x_test_adv = ead_wob.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug('EAD target: %s', target) logger.debug('EAD actual: %s', y_pred_adv) logger.info('EAD success rate: %.2f%%', (100 * sum(target == y_pred_adv) / float(len(target)))) self.assertTrue((target == y_pred_adv).any()) # Second attack without batching ead_wob = ElasticNet(classifier=tfc, targeted=False, max_iter=2, batch_size=1) params = {'y': random_targets(y_test, tfc.nb_classes)} x_test_adv = ead_wob.generate(x_test, **params) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) logger.debug('EAD target: %s', target) logger.debug('EAD actual: %s', y_pred_adv) logger.info('EAD success rate: %.2f%%', (100 * sum(target != y_pred_adv) / float(len(target)))) self.assertTrue((target != y_pred_adv).any()) # Kill TF sess.close() tf.reset_default_graph()
model=classifier_model, use_logits=False, preprocessing=(0.5, 1)) classifier_model.summary() x_test_pred = np.argmax(classifier.predict(x_test[:100]), axis=1) nb_correct_pred = np.sum(x_test_pred == np.argmax(y_test[:100], axis=1)) print("Original test data (first 100 images):") print("Correctly classified: {}".format(nb_correct_pred)) print("Incorrectly classified: {}".format(100 - nb_correct_pred)) attack_fgsm = FastGradientMethod(classifier=classifier, eps=0.05) fgsm_test_adv = attack_fgsm.generate(x_test[:2]) attack_elastic = ElasticNet(classifier=classifier, binary_search_steps=3, max_iter=10) elastic_test_adv = attack_elastic.generate(x_test[:2]) fig = plt.figure() ax1 = fig.add_subplot(131) ax2 = fig.add_subplot(132) ax3 = fig.add_subplot(133) ax1.imshow(fgsm_test_adv[1]) ax2.imshow(elastic_test_adv[1]) ax3.imshow(x_test[1]) plt.show()