def test_keras_mnist(self): """ Second test with the KerasClassifier. :return: """ (_, _), (x_test, _) = self.mnist x_test_original = x_test.copy() # Build KerasClassifier krc = get_classifier_kr() # Attack nf = NewtonFool(krc, max_iter=5, batch_size=100) x_test_adv = nf.generate(x_test) self.assertFalse((x_test == x_test_adv).all()) y_pred = krc.predict(x_test) y_pred_adv = krc.predict(x_test_adv) y_pred_bool = y_pred.max(axis=1, keepdims=1) == y_pred y_pred_max = y_pred.max(axis=1) y_pred_adv_max = y_pred_adv[y_pred_bool] self.assertTrue((y_pred_max >= .9 * y_pred_adv_max).all()) # Check that x_test has not been modified by attack and classifier self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))), 0.0, delta=0.00001)
def test_pytorch_mnist(self): """ Third test with the PyTorchClassifier. :return: """ (_, _), (x_test, _) = self.mnist x_test = np.swapaxes(x_test, 1, 3).astype(np.float32) x_test_original = x_test.copy() # Build PyTorchClassifier ptc = get_classifier_pt() # Attack nf = NewtonFool(ptc, max_iter=5, batch_size=100) x_test_adv = nf.generate(x_test) self.assertFalse((x_test == x_test_adv).all()) y_pred = ptc.predict(x_test) y_pred_adv = ptc.predict(x_test_adv) y_pred_bool = y_pred.max(axis=1, keepdims=1) == y_pred y_pred_max = y_pred.max(axis=1) y_pred_adv_max = y_pred_adv[y_pred_bool] self.assertTrue((y_pred_max >= .9 * y_pred_adv_max).all()) # Check that x_test has not been modified by attack and classifier self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))), 0.0, delta=0.00001)
def test_scikitlearn(self): from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from art.classifiers.scikitlearn import ScikitlearnLogisticRegression, ScikitlearnSVC scikitlearn_test_cases = {LogisticRegression: ScikitlearnLogisticRegression} # , # SVC: ScikitlearnSVC, # LinearSVC: ScikitlearnSVC} (_, _), (x_test, y_test) = self.iris for (model_class, classifier_class) in scikitlearn_test_cases.items(): model = model_class() classifier = classifier_class(model=model, clip_values=(0, 1)) classifier.fit(x=x_test, y=y_test) attack = NewtonFool(classifier, max_iter=5, batch_size=128) x_test_adv = attack.generate(x_test) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1).all()) self.assertTrue((x_test_adv >= 0).all()) preds_adv = np.argmax(classifier.predict(x_test_adv), axis=1) self.assertFalse((np.argmax(y_test, axis=1) == preds_adv).all()) acc = np.sum(preds_adv == np.argmax(y_test, axis=1)) / y_test.shape[0] logger.info('Accuracy of ' + classifier.__class__.__name__ + ' on Iris with NewtonFool adversarial examples' ': %.2f%%', (acc * 100))
def test_tensorflow_mnist(self): """ First test with the TensorFlowClassifier. :return: """ x_test_original = self.x_test_mnist.copy() # Build TensorFlowClassifier tfc, sess = get_image_classifier_tf() # Attack nf = NewtonFool(tfc, max_iter=5, batch_size=100) x_test_adv = nf.generate(self.x_test_mnist) self.assertFalse((self.x_test_mnist == x_test_adv).all()) y_pred = tfc.predict(self.x_test_mnist) y_pred_adv = tfc.predict(x_test_adv) y_pred_bool = y_pred.max(axis=1, keepdims=1) == y_pred y_pred_max = y_pred.max(axis=1) y_pred_adv_max = y_pred_adv[y_pred_bool] self.assertTrue((y_pred_max >= 0.9 * y_pred_adv_max).all()) # Check that x_test has not been modified by attack and classifier self.assertAlmostEqual(float( np.max(np.abs(x_test_original - self.x_test_mnist))), 0.0, delta=0.00001)
def atk_NeutonFool(x_train, x_test, y_train, y_test, classifier): adv_crafter = NewtonFool(classifier, max_iter=20) x_train_adv = adv_crafter.generate(x_train) x_test_adv = adv_crafter.generate(x_test) print("After NeutonFool Attack \n") evaluate(x_train, x_test, y_train, y_test, x_train_adv, x_test_adv, classifier) return x_test_adv, x_train_adv
def newton_fool(x_test, model, max_iter, eta, batch_size): classifier = KerasClassifier(model=model, clip_values=(0, 1)) attack_cw = NewtonFool(classifier, max_iter=max_iter, eta=eta, batch_size=batch_size) x_test_adv = attack_cw.generate(x_test) return np.reshape(x_test_adv, (32, 32, 3))
def test_iris_pt(self): (_, _), (x_test, y_test) = self.iris classifier = get_iris_classifier_pt() attack = NewtonFool(classifier, max_iter=5, batch_size=128) x_test_adv = attack.generate(x_test) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1).all()) self.assertTrue((x_test_adv >= 0).all()) preds_adv = np.argmax(classifier.predict(x_test_adv), axis=1) self.assertFalse((np.argmax(y_test, axis=1) == preds_adv).all()) acc = np.sum(preds_adv == np.argmax(y_test, axis=1)) / y_test.shape[0] logger.info('Accuracy on Iris with NewtonFool adversarial examples: %.2f%%', (acc * 100))
def test_iris_k_unbounded(self): (_, _), (x_test, y_test) = self.iris classifier, _ = get_iris_classifier_kr() # Recreate a classifier without clip values classifier = KerasClassifier(model=classifier._model, use_logits=False, channel_index=1) attack = NewtonFool(classifier, max_iter=5, batch_size=128) x_test_adv = attack.generate(x_test) self.assertFalse((x_test == x_test_adv).all()) preds_adv = np.argmax(classifier.predict(x_test_adv), axis=1) self.assertFalse((np.argmax(y_test, axis=1) == preds_adv).all()) acc = np.sum(preds_adv == np.argmax(y_test, axis=1)) / y_test.shape[0] logger.info('Accuracy on Iris with NewtonFool adversarial examples: %.2f%%', (acc * 100))
def test_pytorch_iris(self): classifier = get_tabular_classifier_pt() attack = NewtonFool(classifier, max_iter=5, batch_size=128) x_test_adv = attack.generate(self.x_test_iris) self.assertFalse((self.x_test_iris == x_test_adv).all()) self.assertTrue((x_test_adv <= 1).all()) self.assertTrue((x_test_adv >= 0).all()) preds_adv = np.argmax(classifier.predict(x_test_adv), axis=1) self.assertFalse((np.argmax(self.y_test_iris, axis=1) == preds_adv).all()) acc = np.sum(preds_adv == np.argmax( self.y_test_iris, axis=1)) / self.y_test_iris.shape[0] logger.info( "Accuracy on Iris with NewtonFool adversarial examples: %.2f%%", (acc * 100))
def GetAttackers(classifier, x_test, attacker_name): """ Function: Load classifier and generate adversarial samples """ t_start = time.time() if attacker_name == "FGSM": attacker = FastGradientMethod(classifier=classifier, eps=0.3) elif attacker_name == "Elastic": attacker = ElasticNet(classifier=classifier, confidence=0.5) elif attacker_name == "BasicIterativeMethod": attacker = BasicIterativeMethod(classifier=classifier, eps=0.3) elif attacker_name == "NewtonFool": attacker = NewtonFool(classifier=classifier, max_iter=20) elif attacker_name == "HopSkipJump": attacker = HopSkipJump(classifier=classifier, max_iter=20) elif attacker_name == "ZooAttack": attacker = ZooAttack(classifier=classifier, max_iter=20) elif attacker_name == "VirtualAdversarialMethod": attacker = VirtualAdversarialMethod(classifier=classifier, max_iter=20) elif attacker_name == "UniversalPerturbation": attacker = UniversalPerturbation(classifier=classifier, max_iter=20) elif attacker_name == "AdversarialPatch": attacker = AdversarialPatch(classifier=classifier, max_iter=20) elif attacker_name == "Attack": attacker = Attack(classifier=classifier) elif attacker_name == "BoundaryAttack": attacker = BoundaryAttack(classifier=classifier, targeted=False, epsilon=0.05, max_iter=20) #, max_iter=20 elif attacker_name == "CarliniL2": attacker = CarliniL2Method(classifier=classifier, confidence=0.5, learning_rate=0.001, max_iter=15) elif attacker_name == "CarliniLinf": attacker = CarliniLInfMethod(classifier=classifier, confidence=0.5, learning_rate=0.001, max_iter=15) elif attacker_name == "DeepFool": attacker = DeepFool(classifier) elif attacker_name == "SMM": attacker = SaliencyMapMethod(classifier=classifier, theta=2) elif attacker_name == "PGD": attacker = ProjectedGradientDescent(classifier=classifier, norm=2, eps=1, eps_step=0.5) else: raise ValueError("Please get the right attacker's name for the input.") test_adv = attacker.generate(x_test) dt = time.time() - t_start return test_adv, dt
def test_scikitlearn(self): from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from art.classifiers.scikitlearn import SklearnClassifier scikitlearn_test_cases = [ LogisticRegression(solver="lbfgs", multi_class="auto"), SVC(gamma="auto"), LinearSVC(), ] x_test_original = self.x_test_iris.copy() for model in scikitlearn_test_cases: classifier = SklearnClassifier(model=model, clip_values=(0, 1)) classifier.fit(x=self.x_test_iris, y=self.y_test_iris) attack = NewtonFool(classifier, max_iter=5, batch_size=128) x_test_adv = attack.generate(self.x_test_iris) self.assertFalse((self.x_test_iris == x_test_adv).all()) self.assertTrue((x_test_adv <= 1).all()) self.assertTrue((x_test_adv >= 0).all()) preds_adv = np.argmax(classifier.predict(x_test_adv), axis=1) self.assertFalse((np.argmax(self.y_test_iris, axis=1) == preds_adv).all()) acc = np.sum(preds_adv == np.argmax( self.y_test_iris, axis=1)) / self.y_test_iris.shape[0] logger.info( "Accuracy of " + classifier.__class__.__name__ + " on Iris with NewtonFool adversarial examples" ": %.2f%%", (acc * 100), ) # Check that x_test has not been modified by attack and classifier self.assertAlmostEqual(float( np.max(np.abs(x_test_original - self.x_test_iris))), 0.0, delta=0.00001)
def test_scikitlearn(self): from sklearn.linear_model import LogisticRegression from art.classifiers.scikitlearn import ScikitlearnLogisticRegression scikitlearn_test_cases = { LogisticRegression: ScikitlearnLogisticRegression } # , # SVC: ScikitlearnSVC, # LinearSVC: ScikitlearnSVC} (_, _), (x_test, y_test) = self.iris x_test_original = x_test.copy() for (model_class, classifier_class) in scikitlearn_test_cases.items(): model = model_class() classifier = classifier_class(model=model, clip_values=(0, 1)) classifier.fit(x=x_test, y=y_test) attack = NewtonFool(classifier, max_iter=5, batch_size=128) x_test_adv = attack.generate(x_test) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1).all()) self.assertTrue((x_test_adv >= 0).all()) preds_adv = np.argmax(classifier.predict(x_test_adv), axis=1) self.assertFalse((np.argmax(y_test, axis=1) == preds_adv).all()) acc = np.sum( preds_adv == np.argmax(y_test, axis=1)) / y_test.shape[0] logger.info( 'Accuracy of ' + classifier.__class__.__name__ + ' on Iris with NewtonFool adversarial examples' ': %.2f%%', (acc * 100)) # Check that x_test has not been modified by attack and classifier self.assertAlmostEqual(float( np.max(np.abs(x_test_original - x_test))), 0.0, delta=0.00001)
def test_krclassifier(self): """ Second test with the KerasClassifier. :return: """ # Build KerasClassifier krc = get_classifier_kr() # Get MNIST (_, _), (x_test, _) = self.mnist # Attack nf = NewtonFool(krc, max_iter=5, batch_size=100) x_test_adv = nf.generate(x_test) self.assertFalse((x_test == x_test_adv).all()) y_pred = krc.predict(x_test) y_pred_adv = krc.predict(x_test_adv) y_pred_bool = y_pred.max(axis=1, keepdims=1) == y_pred y_pred_max = y_pred.max(axis=1) y_pred_adv_max = y_pred_adv[y_pred_bool] self.assertTrue((y_pred_max >= .9 * y_pred_adv_max).all())
def test_tfclassifier(self): """ First test with the TensorFlowClassifier. :return: """ # Build TensorFlowClassifier tfc, sess = get_classifier_tf() # Get MNIST (_, _), (x_test, _) = self.mnist # Attack nf = NewtonFool(tfc, max_iter=5, batch_size=100) x_test_adv = nf.generate(x_test) self.assertFalse((x_test == x_test_adv).all()) y_pred = tfc.predict(x_test) y_pred_adv = tfc.predict(x_test_adv) y_pred_bool = y_pred.max(axis=1, keepdims=1) == y_pred y_pred_max = y_pred.max(axis=1) y_pred_adv_max = y_pred_adv[y_pred_bool] self.assertTrue((y_pred_max >= .9 * y_pred_adv_max).all())
def test_ptclassifier(self): """ Third test with the PyTorchClassifier. :return: """ # Build PyTorchClassifier ptc = get_classifier_pt() # Get MNIST (_, _), (x_test, _) = self.mnist x_test = np.swapaxes(x_test, 1, 3).astype(np.float32) # Attack nf = NewtonFool(ptc, max_iter=5, batch_size=100) x_test_adv = nf.generate(x_test) self.assertFalse((x_test == x_test_adv).all()) y_pred = ptc.predict(x_test) y_pred_adv = ptc.predict(x_test_adv) y_pred_bool = y_pred.max(axis=1, keepdims=1) == y_pred y_pred_max = y_pred.max(axis=1) y_pred_adv_max = y_pred_adv[y_pred_bool] self.assertTrue((y_pred_max >= .9 * y_pred_adv_max).all())
def make_attack(x, y, model, name, style='PGD'): if style == 'PGD': attacked_data = np.array([ PGD_infini(x[idx], y[idx], cst.PGD_attack_delta, cst.PGD_attack_epsilon, cst.PGD_attack_nb_iter, model) for idx in tqdm_notebook(range(len(x))) ]) np.save(os.path.join(cst.DATA, name), attacked_data) if style == 'FGSM': attacked_data = np.array([ FGSM(x[idx], y[idx], cst.FGSM_attack_delta, model) for idx in tqdm_notebook(range(len(x))) ]) np.save(os.path.join(cst.DATA, name), attacked_data) if style == 'Carlini_Inf': attacked_data = np.array([ carlini_inf(x[idx], model, cst.CInf_eps, cst.CInf_max_iter, cst.CInf_learning_rate) for idx in tqdm_notebook(range(len(x))) ]) np.save(os.path.join(cst.DATA, name), attacked_data) if style == 'Deep_Fool': attacked_data = np.array([ deep_fool(x[idx], model, cst.DFool_max_iter, cst.DFool_epsilon, cst.DFool_nb_grads, cst.DFool_batch_size) for idx in tqdm_notebook(range(len(x))) ]) np.save(os.path.join(cst.DATA, name), attacked_data) if style == 'Newton_Fool': attacked_data = np.array([ NewtonFool(x[idx], model, cst.NFool_max_iter, cst.NFool_eta, cst.NFool_batch_size) for idx in tqdm_notebook(range(len(x))) ]) np.save(os.path.join(cst.DATA, name), attacked_data) if style == 'Basic_Iterative_Method': attacked_data = np.array([ basic_iter(x[idx], model, cst.BIter_eps, cst.BIter_eps_step, cst.BIter_max_iter, cst.BIter_targeted, cst.BIter_batch_size) for idx in tqdm_notebook(range(len(x))) ]) np.save(os.path.join(cst.DATA, name), attacked_data) return attacked_data