def test_krclassifier(self): """ Second test with the KerasClassifier. :return: """ # Initialize a tf session session = tf.Session() k.set_session(session) # Get MNIST batch_size, nb_train, nb_test = 100, 1000, 10 (x_train, y_train), (x_test, y_test), _, _ = load_mnist() x_train, y_train = x_train[:nb_train], y_train[:nb_train] x_test, y_test = x_test[:nb_test], y_test[:nb_test] # Create simple CNN model = Sequential() model.add(Conv2D(4, kernel_size=(5, 5), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(10, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(lr=0.01), metrics=['accuracy']) # Get classifier krc = KerasClassifier((0, 1), model, use_logits=False) krc.fit(x_train, y_train, batch_size=batch_size, nb_epochs=2) # First attack cl2m = CarliniL2Method(classifier=krc, targeted=True, max_iter=100, binary_search_steps=10, learning_rate=2e-2, initial_const=3, decay=1e-2) params = {'y': random_targets(y_test, krc.nb_classes)} x_test_adv = cl2m.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1) self.assertTrue((target == y_pred_adv).any()) # Second attack cl2m = CarliniL2Method(classifier=krc, targeted=False, max_iter=100, binary_search_steps=10, learning_rate=2e-2, initial_const=3, decay=1e-2) params = {'y': random_targets(y_test, krc.nb_classes)} x_test_adv = cl2m.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1) self.assertTrue((target != y_pred_adv).all()) # Third attack cl2m = CarliniL2Method(classifier=krc, targeted=False, max_iter=100, binary_search_steps=10, learning_rate=2e-2, initial_const=3, decay=1e-2) params = {} x_test_adv = cl2m.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) y_pred = np.argmax(krc.predict(x_test), axis=1) y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1) self.assertTrue((y_pred != y_pred_adv).any())
def test_krclassifier(self): """ Second test with the KerasClassifier. :return: """ # Initialize a tf session session = tf.Session() k.set_session(session) # Get MNIST batch_size, nb_train, nb_test = 10, 10, 10 (x_train, y_train), (x_test, y_test), _, _ = load_mnist() x_train, y_train = x_train[:nb_train], y_train[:nb_train] x_test, y_test = x_test[:nb_test], y_test[:nb_test] # Create simple CNN model = Sequential() model.add( Conv2D(4, kernel_size=(5, 5), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(10, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(lr=0.01), metrics=['accuracy']) # Get classifier krc = KerasClassifier((0, 1), model, use_logits=False) krc.fit(x_train, y_train, batch_size=batch_size, nb_epochs=2) # Attack # TODO Launch with all possible attacks attack_params = { "attacker": "newtonfool", "attacker_params": { "max_iter": 20 } } up = UniversalPerturbation(krc) x_train_adv = up.generate(x_train, **attack_params) self.assertTrue((up.fooling_rate >= 0.2) or not up.converged) x_test_adv = x_test + up.v self.assertFalse((x_test == x_test_adv).all()) train_y_pred = np.argmax(krc.predict(x_train_adv), axis=1) test_y_pred = np.argmax(krc.predict(x_test_adv), axis=1) self.assertFalse((np.argmax(y_test, axis=1) == test_y_pred).all()) self.assertFalse((np.argmax(y_train, axis=1) == train_y_pred).all())
def test_krclassifier(self): """ Second test with the KerasClassifier. :return: """ # Get MNIST batch_size, nb_train, nb_test = 100, 1000, 10 (x_train, y_train), (x_test, y_test), _, _ = load_mnist() x_train, y_train = x_train[:nb_train], y_train[:nb_train] x_test, y_test = x_test[:nb_test], y_test[:nb_test] # Create simple CNN model = Sequential() model.add( Conv2D(4, kernel_size=(5, 5), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(10, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(lr=0.01), metrics=['accuracy']) # Get classifier krc = KerasClassifier((0, 1), model, use_logits=False) krc.fit(x_train, y_train, batch_size=batch_size, nb_epochs=2) # Attack nf = NewtonFool(krc) nf.set_params(max_iter=5) x_test_adv = nf.generate(x_test) self.assertFalse((x_test == x_test_adv).all()) y_pred = krc.predict(x_test) y_pred_adv = krc.predict(x_test_adv) y_pred_bool = y_pred.max(axis=1, keepdims=1) == y_pred y_pred_max = y_pred.max(axis=1) y_pred_adv_max = y_pred_adv[y_pred_bool] self.assertTrue((y_pred_max >= y_pred_adv_max).all())
def test_binary_input_detector(self): """ Test the binary input detector end-to-end. :return: """ # Initialize a tf session session = tf.Session() k.set_session(session) # Get MNIST batch_size, nb_train, nb_test = 100, 1000, 10 (x_train, y_train), (x_test, y_test), _, _ = load_mnist() x_train, y_train = x_train[:NB_TRAIN], y_train[:NB_TRAIN] x_test, y_test = x_test[:NB_TEST], y_test[:NB_TEST] input_shape = x_train.shape[1:] nb_classes = 10 # Create simple CNN model = Sequential() model.add( Conv2D(4, kernel_size=(5, 5), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(nb_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(lr=0.01), metrics=['accuracy']) # Create classifier and train it: classifier = KerasClassifier((0, 1), model, use_logits=False) classifier.fit(x_train, y_train, nb_epochs=5, batch_size=128) # Generate adversarial samples: attacker = FastGradientMethod(classifier, eps=0.1) x_train_adv = attacker.generate(x_train[:nb_train]) x_test_adv = attacker.generate(x_test[:nb_test]) # Compile training data for detector: x_train_detector = np.concatenate((x_train[:nb_train], x_train_adv), axis=0) y_train_detector = np.concatenate( (np.array([[1, 0]] * nb_train), np.array([[0, 1]] * nb_train)), axis=0) # Create a simple CNN for the detector. # Note: we use the same architecture as for the classifier, except for the number of outputs (=2) model = Sequential() model.add( Conv2D(4, kernel_size=(5, 5), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(2, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(lr=0.01), metrics=['accuracy']) # Create detector and train it: detector = BinaryInputDetector( KerasClassifier((0, 1), model, use_logits=False)) detector.fit(x_train_detector, y_train_detector, nb_epochs=2, batch_size=128) # Apply detector on clean and adversarial test data: test_detection = np.argmax(detector(x_test), axis=1) test_adv_detection = np.argmax(detector(x_test_adv), axis=1) # Assert there is at least one true positive and negative: nb_true_positives = len(np.where(test_adv_detection == 1)[0]) nb_true_negatives = len(np.where(test_detection == 0)[0]) self.assertTrue(nb_true_positives > 0) self.assertTrue(nb_true_negatives > 0)
def test_krclassifier(self): """ Second test with the KerasClassifier. :return: """ # Initialize a tf session session = tf.Session() k.set_session(session) # Get MNIST (x_train, y_train), (x_test, y_test) = self.mnist # Create simple CNN model = Sequential() model.add( Conv2D(4, kernel_size=(5, 5), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(10, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(lr=0.01), metrics=['accuracy']) # Get classifier krc = KerasClassifier((0, 1), model, use_logits=False) krc.fit(x_train, y_train, batch_size=BATCH_SIZE, nb_epochs=10) # First attack cl2m = CarliniL2Method(classifier=krc, targeted=True, max_iter=100, binary_search_steps=1, learning_rate=1, initial_const=10, decay=0) params = {'y': random_targets(y_test, krc.nb_classes)} x_test_adv = cl2m.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1) print("CW2 Target: %s" % target) print("CW2 Actual: %s" % y_pred_adv) print("CW2 Success Rate: %f" % (sum(target == y_pred_adv) / float(len(target)))) self.assertTrue((target == y_pred_adv).any()) # Second attack cl2m = CarliniL2Method(classifier=krc, targeted=False, max_iter=100, binary_search_steps=1, learning_rate=1, initial_const=10, decay=0) params = {'y': random_targets(y_test, krc.nb_classes)} x_test_adv = cl2m.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params['y'], axis=1) y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1) print("CW2 Target: %s" % target) print("CW2 Actual: %s" % y_pred_adv) print("CW2 Success Rate: %f" % (sum(target != y_pred_adv) / float(len(target)))) self.assertTrue((target != y_pred_adv).any()) # Third attack cl2m = CarliniL2Method(classifier=krc, targeted=False, max_iter=100, binary_search_steps=1, learning_rate=1, initial_const=10, decay=0) params = {} x_test_adv = cl2m.generate(x_test, **params) self.assertFalse((x_test == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) y_pred = np.argmax(krc.predict(x_test), axis=1) y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1) print("CW2 Target: %s" % y_pred) print("CW2 Actual: %s" % y_pred_adv) print("CW2 Success Rate: %f" % (sum(y_pred != y_pred_adv) / float(len(y_pred)))) self.assertTrue((y_pred != y_pred_adv).any())