def full_linear_network(): # Simple Linear unit n_in = N_full_grid_extractor n_out = 1 theta = 0.05 layers = [ layer.FullyConnected(n_in, n_out, activation=activation.Linear(), weight_init=misc.normalised_initialiser(1)) ] return network.Network(layers, theta, loss=activation.MSE())
def two_layer_sigmoid_network(): n_in = N_simple_grid_extractor n_out1 = n_in // 2 n_out2 = 1 theta = 0.05 layers = [ layer.FullyConnected(n_in, n_out1, activation=activation.Sigmoid(), weight_init=misc.normalised_initialiser(1)), layer.FullyConnected(n_out1, n_out2, activation=activation.Linear(), weight_init=misc.normalised_initialiser(1)), ] return network.Network(layers, theta, loss=activation.MSE())
def full_two_layer_sigmoid_network_sigoutput(): n_in = N_full_grid_extractor n_out1 = n_in // 2 n_out2 = 1 theta = 0.05 layers = [ layer.FullyConnected(n_in, n_out1, activation=activation.Sigmoid(), weight_init=misc.zero_initialiser(1)), layer.FullyConnected(n_out1, n_out2, activation=activation.Sigmoid(), weight_init=misc.zero_initialiser(1)), ] return network.Network(layers, theta, loss=activation.XEntropy())
def full4Sigmoid(): n_in = N_full_grid_extractor n_out1 = n_in * 2 // 3 n_out2 = n_out1 * 2 // 3 n_out3 = n_out2 * 2 // 3 n_out4 = 1 theta = 0.05 layers = [ layer.FullyConnected(n_in, n_out1, activation=activation.Sigmoid(), weight_init=misc.normalised_initialiser(1)), layer.FullyConnected(n_out1, n_out2, activation=activation.Sigmoid(), weight_init=misc.normalised_initialiser(1)), layer.FullyConnected(n_out2, n_out3, activation=activation.Sigmoid(), weight_init=misc.normalised_initialiser(1)), layer.FullyConnected(n_out3, n_out4, activation=activation.Linear(), weight_init=misc.normalised_initialiser(1)), ] return network.Network(layers, theta, loss=activation.MSE())
def four_layer_leaky_relu_network(): n_in = N_simple_grid_extractor n_out1 = n_in * 2 // 3 n_out2 = n_out1 * 2 // 3 n_out3 = n_out2 * 2 // 3 n_out4 = 1 theta = 0.05 layers = [ layer.FullyConnected(n_in, n_out1, activation=activation.LeakyRelu(), weight_init=misc.normalised_initialiser(1)), layer.FullyConnected(n_out1, n_out2, activation=activation.LeakyRelu(), weight_init=misc.normalised_initialiser(1)), layer.FullyConnected(n_out2, n_out3, activation=activation.LeakyRelu(), weight_init=misc.normalised_initialiser(1)), layer.FullyConnected(n_out3, n_out4, activation=activation.LeakyRelu(), weight_init=misc.normalised_initialiser(1)), ] return network.Network(layers, theta, loss=activation.MSE())