示例#1
0
    def test_stores_and_loads(self):
        kwargs = {
            'matcher_nms_n': np.random.randint(0, 5),
            'matcher_nms_tau': np.random.randint(0, 100),
            'matcher_match_binsize': np.random.randint(0, 100),
            'matcher_match_radius': np.random.randint(0, 500),
            'matcher_match_disp_tolerance': np.random.randint(0, 10),
            'matcher_outlier_disp_tolerance': np.random.randint(0, 10),
            'matcher_outlier_flow_tolerance': np.random.randint(0, 10),
            'matcher_multi_stage': np.random.choice([True, False]),
            'matcher_half_resolution': np.random.choice([True, False]),
            'matcher_refinement': np.random.choice(MatcherRefinement),
            'bucketing_max_features': np.random.randint(0, 10),
            'bucketing_bucket_width': np.random.randint(0, 100),
            'bucketing_bucket_height': np.random.randint(0, 100),
            'height': np.random.uniform(0.0, 3.0),
            'pitch': np.random.uniform(0.0, 3.0),
            'ransac_iters': np.random.randint(0, 100),
            'inlier_threshold': np.random.uniform(0.0, 3.0),
            'motion_threshold': np.random.uniform(0.0, 100.0)
        }
        obj = LibVisOMonoSystem(**kwargs)
        obj.save()

        # Load all the entities
        all_entities = list(VisionSystem.objects.all())
        self.assertGreaterEqual(len(all_entities), 1)
        self.assertEqual(all_entities[0], obj)
        all_entities[0].delete()
示例#2
0
    def test_get_instance_returns_an_existing_instance_simple(self):
        obj = LibVisOMonoSystem()
        obj.save()

        result = LibVisOMonoSystem.get_instance()
        self.assertEqual(obj.pk, result.pk)
        self.assertEqual(obj, result)
示例#3
0
    def test_result_saves(self):
        # Make an image collection with some number of images
        images = []
        image_builder = DemoImageBuilder(mode=ImageMode.MONOCULAR, width=160, height=120)
        num_images = 10
        for time in range(num_images):
            image = image_builder.create_frame(time / num_images)
            image.save()
            images.append(image)
        image_collection = ImageCollection(
            images=images,
            timestamps=list(range(len(images))),
            sequence_type=ImageSequenceType.SEQUENTIAL
        )
        image_collection.save()

        subject = LibVisOMonoSystem()
        subject.save()

        # Actually run the system using mocked images
        subject.set_camera_intrinsics(image_builder.get_camera_intrinsics(), 1 / 10)
        subject.start_trial(ImageSequenceType.SEQUENTIAL)
        for time, image in enumerate(images):
            subject.process_image(image, time)
        result = subject.finish_trial()
        self.assertIsInstance(result, SLAMTrialResult)
        self.assertEqual(len(image_collection), len(result.results))
        result.image_source = image_collection
        result.save()

        # Load all the entities
        all_entities = list(SLAMTrialResult.objects.all())
        self.assertGreaterEqual(len(all_entities), 1)
        self.assertEqual(all_entities[0], result)
        all_entities[0].delete()

        SLAMTrialResult._mongometa.collection.drop()
        ImageCollection._mongometa.collection.drop()
        Image._mongometa.collection.drop()
示例#4
0
    def test_get_instance_returns_an_existing_instance_complex(self):
        matcher_nms_n = np.random.randint(1, 5)
        matcher_nms_tau = np.random.randint(20, 100)
        matcher_match_binsize = np.random.randint(20, 100)
        matcher_match_radius = np.random.randint(20, 100)
        matcher_match_disp_tolerance = np.random.randint(1, 5)
        matcher_outlier_disp_tolerance = np.random.randint(2, 10)
        matcher_outlier_flow_tolerance = np.random.randint(2, 10)
        matcher_multi_stage = np.random.choice([True, False])
        matcher_half_resolution = np.random.choice([True, False])
        matcher_refinement = np.random.choice(MatcherRefinement)
        bucketing_max_features = np.random.randint(2, 10)
        bucketing_bucket_width = np.random.randint(20, 100)
        bucketing_bucket_height = np.random.randint(20, 100)
        height = np.random.uniform(0.8, 1.2)
        pitch = np.random.uniform(-0.1, 0.1)
        ransac_iters = np.random.randint(500, 3000)
        inlier_threshold = np.random.uniform(0, 0.0001)
        motion_threshold = np.random.uniform(20.0, 300.0)

        obj = LibVisOMonoSystem(
            matcher_nms_n=matcher_nms_n,
            matcher_nms_tau=matcher_nms_tau,
            matcher_match_binsize=matcher_match_binsize,
            matcher_match_radius=matcher_match_radius,
            matcher_match_disp_tolerance=matcher_match_disp_tolerance,
            matcher_outlier_disp_tolerance=matcher_outlier_disp_tolerance,
            matcher_outlier_flow_tolerance=matcher_outlier_flow_tolerance,
            matcher_multi_stage=matcher_multi_stage,
            matcher_half_resolution=matcher_half_resolution,
            matcher_refinement=matcher_refinement,
            bucketing_max_features=bucketing_max_features,
            bucketing_bucket_width=bucketing_bucket_width,
            bucketing_bucket_height=bucketing_bucket_height,
            height=height,
            pitch=pitch,
            ransac_iters=ransac_iters,
            inlier_threshold=inlier_threshold,
            motion_threshold=motion_threshold
        )
        obj.save()

        result = LibVisOMonoSystem.get_instance(
            matcher_nms_n=matcher_nms_n,
            matcher_nms_tau=matcher_nms_tau,
            matcher_match_binsize=matcher_match_binsize,
            matcher_match_radius=matcher_match_radius,
            matcher_match_disp_tolerance=matcher_match_disp_tolerance,
            matcher_outlier_disp_tolerance=matcher_outlier_disp_tolerance,
            matcher_outlier_flow_tolerance=matcher_outlier_flow_tolerance,
            matcher_multi_stage=matcher_multi_stage,
            matcher_half_resolution=matcher_half_resolution,
            matcher_refinement=matcher_refinement,
            bucketing_max_features=bucketing_max_features,
            bucketing_bucket_width=bucketing_bucket_width,
            bucketing_bucket_height=bucketing_bucket_height,
            height=height,
            pitch=pitch,
            ransac_iters=ransac_iters,
            inlier_threshold=inlier_threshold,
            motion_threshold=motion_threshold
        )
        self.assertEqual(obj.pk, result.pk)
        self.assertEqual(obj, result)