示例#1
0
    def process_image(self, image: Image, timestamp: float) -> None:
        start_time = time.time()
        logging.getLogger(__name__).debug(
            "Processing image at time {0} ...".format(timestamp))

        # This is the pose of the previous pose relative to the next one
        tracking, estimated_motion = self.handle_process_image(
            self._viso, image, timestamp)
        logging.getLogger(__name__).debug("    got estimated motion ...")
        end_time = time.time()

        frame_result = FrameResult(
            timestamp=timestamp,
            image=image.pk,
            processing_time=end_time - start_time,
            pose=image.camera_pose,
            tracking_state=TrackingState.OK if tracking else TrackingState.LOST
            if self._has_chosen_origin else TrackingState.NOT_INITIALIZED,
            estimated_motion=estimated_motion,
            num_matches=self._viso.getNumberOfMatches())
        if tracking and not self._has_chosen_origin:
            # set the intial pose estimate to 0, so we can infer the later ones from the motions
            self._has_chosen_origin = True
            frame_result.estimated_pose = tf.Transform()
            frame_result.estimated_motion = None  # This will always be the identity on the first valid frame
        self._frame_results.append(frame_result)
        logging.getLogger(__name__).debug("    Processing done.")
示例#2
0
    def test_profile_constructor_infer_motions(self, ):
        import cProfile as profile

        repeats = 3
        stats_file = "create_slam_result_motions.prof"
        random = np.random.RandomState(13)

        frame_results = [
            FrameResult(
                timestamp=idx + random.normal(0, 0.01),
                image=image,
                processing_time=random.uniform(0.01, 1),
                pose=image.camera_pose,
                estimated_motion=Transform(
                    (14 + random.normal(0, 1), 0.9 + random.normal(0, 0.05),
                     0.1 + random.normal(0, 0.05)),
                    tf3d.quaternions.axangle2quat(
                        (1, 2, 4), 5 * np.pi / (2 * self.num_images) +
                        random.normal(0, np.pi / 64)),
                    w_first=True) if idx > (self.num_images // 10) else None,
                tracking_state=TrackingState.OK,
                num_features=random.randint(10, 1000),
                num_matches=random.randint(10, 1000))
            for idx, image in enumerate(self.images)
        ]
        # Set an initial estimated pose so that the poses will be inferred
        frame_results[(self.num_images // 10)].estimated_pose = Transform()

        profile.runctx(
            "make_trial_result(self.system, self.image_source, frame_results)",
            locals=locals(),
            globals=globals(),
            filename=stats_file)
示例#3
0
    def process_image(self, image: Image, timestamp: float) -> None:
        """
        Process an image as part of the current run.
        Should automatically start a new trial if none is currently started.
        :param image: The image object for this frame
        :param timestamp: A timestamp or index associated with this image. Sometimes None.
        :return: void
        """
        if self._input_queue is not None:
            # Wait here, to throttle the input rate to the queue, and prevent it from growing too large
            # delay_time = 0
            # while self._input_queue.qsize() > 30 and delay_time < 10:
            #     time.sleep(1)
            #     delay_time += 1
            logging.getLogger(__name__).debug("Sending frame {0}...".format(len(self._partial_frame_results)))

            # Add the camera pose to the ground-truth trajectory
            self._partial_frame_results[timestamp] = FrameResult(
                timestamp=timestamp,
                image=image.pk,
                pose=image.camera_pose
            )

            # Send different input based on the running mode
            if self.mode == SensorMode.MONOCULAR:
                self._input_queue.put((image_utils.convert_to_grey(image.pixels), None, timestamp))
            elif self.mode == SensorMode.STEREO:
                self._input_queue.put((image_utils.convert_to_grey(image.left_pixels),
                                       image_utils.convert_to_grey(image.right_pixels), timestamp))
            elif self.mode == SensorMode.RGBD:
                self._input_queue.put((image_utils.convert_to_grey(image.pixels),
                                       image.depth.astype(np.float32), timestamp))
示例#4
0
def make_trials(system: VisionSystem, image_collection: ImageCollection,
                repeats: int, random: np.random.RandomState):
    # Get the true motions, for making trials
    true_motions = [
        image_collection.images[frame_idx - 1].camera_pose.find_relative(
            image_collection.images[frame_idx].camera_pose)
        if frame_idx > 0 else None
        for frame_idx in range(len(image_collection))
    ]

    # Make some plausible trial results
    trial_results = []
    for repeat in range(repeats):
        start_idx = random.randint(0, len(image_collection) - 2)
        frame_results = [
            FrameResult(
                timestamp=timestamp,
                image=image,
                pose=image.camera_pose,
                processing_time=random.uniform(0.001, 1.0),
                estimated_motion=true_motions[frame_idx].find_independent(
                    Transform(location=random.normal(0, 1, 3),
                              rotation=t3.quaternions.axangle2quat(
                                  random.uniform(-1, 1, 3),
                                  random.normal(0, np.pi / 2)),
                              w_first=True))
                if frame_idx > start_idx else None,
                tracking_state=TrackingState.OK
                if frame_idx > start_idx else TrackingState.NOT_INITIALIZED,
                num_matches=random.randint(10, 100))
            for frame_idx, (timestamp, image) in enumerate(image_collection)
        ]
        frame_results[start_idx].estimated_pose = Transform()
        trial_settings = {'random': random.randint(0, 10), 'repeat': repeat}
        trial_result = SLAMTrialResult(system=system,
                                       image_source=image_collection,
                                       success=True,
                                       results=frame_results,
                                       has_scale=False,
                                       settings=trial_settings)
        trial_result.save()
        trial_results.append(trial_result)
    return trial_results
    def test_profile(self, _):
        import cProfile as profile

        repeats = 3
        random = np.random.RandomState(13)

        # Make some number of trials results to measure
        trial_results = []
        for repeat in range(repeats):
            frame_results = [
                FrameResult(
                    timestamp=idx + random.normal(0, 0.01),
                    image=image,
                    processing_time=random.uniform(0.01, 1),
                    pose=image.camera_pose,
                    estimated_motion=Transform(
                        (14 + random.normal(0, 1), 0.9 + random.normal(0, 0.05), 0.1 + random.normal(0, 0.05)),
                        tf3d.quaternions.axangle2quat(
                            (1, 2, 4), 5 * np.pi / (2 * self.num_images) + random.normal(0, np.pi / 64)),
                        w_first=True
                    ) if idx > 0 else None,
                    tracking_state=TrackingState.OK,
                    num_features=random.randint(10, 1000),
                    num_matches=random.randint(10, 1000)
                )
                for idx, image in enumerate(self.images)
            ]
            trial_result = SLAMTrialResult(
                system=self.system,
                image_source=self.image_source,
                success=True,
                results=frame_results,
                has_scale=False
            )
            trial_results.append(trial_result)

        metric = FrameErrorMetric()

        stats_file = "measure_trials.prof"

        profile.runctx("metric.measure_results(trial_results)",
                       locals=locals(), globals=globals(), filename=stats_file)
    def process_image(self, image: Image, timestamp: float) -> None:
        """
        Process an image as part of the current run.
        Should automatically start a new trial if none is currently started.
        :param image: The image object for this frame
        :param timestamp: A timestamp or index associated with this image. Sometimes None.
        :return: void
        """
        if self._undistorter is None:
            raise RuntimeError("Cannot process image, trial has not started yet. Call 'start_trial'")
        image_data = image_utils.to_uint_image(image_utils.convert_to_grey(image.pixels))
        dso_img = self._undistorter.undistort_greyscale(image_data, 0, timestamp, 1.0)
        self._processing_start_times[timestamp] = time.time()
        self._system.addActiveFrame(dso_img, self._image_index)
        self._image_index += 1

        self._frame_results[timestamp] = FrameResult(
            timestamp=timestamp,
            image=image.pk,
            pose=image.camera_pose,
            tracking_state=TrackingState.NOT_INITIALIZED,
            processing_time=np.nan
        )