""" Normal Parallel Plot ==================== _thumb: .2, .5 """ import arviz as az data = az.load_arviz_data("centered_eight") ax = az.plot_parallel(data, var_names=["theta", "tau", "mu"], norm_method="normal", backend="bokeh")
""" Parallel Plot ============= _thumb: .2, .5 """ import arviz as az az.style.use("arviz-darkgrid") data = az.load_arviz_data("centered_eight") ax = az.plot_parallel(data, var_names=["theta", "tau", "mu"]) ax.set_xticklabels(ax.get_xticklabels(), rotation=70)
az.plot_trace(fit,var_names=['home_score_new', 'away_score_new']) az.plot_trace(fit, var_names=['att', 'def'], combined=True) plt.style.use('ggplot') _, ax = plt.subplots(1, 2, figsize=(15, 6)) az.plot_forest(fit, var_names="att",combined=True, ax=ax[0], kind='ridgeplot', ridgeplot_alpha=.5, ridgeplot_overlap=1.5, hdi_prob=.999, linewidth=.5) ax[0].set_yticklabels(sorted(names, reverse=True)) ax[0].set_title('Estimated Attack Effect (Positive is Better)', loc='left') ax[0].grid(True) az.plot_forest(fit, var_names="def", combined=True, ax=ax[1], kind='ridgeplot', ridgeplot_alpha=.5, ridgeplot_overlap=1.5, colors='#99c2ff', hdi_prob=.999, linewidth=.5) ax[1].set_yticklabels(sorted(names, reverse=True)) ax[1].set_title('Estimated Defense Effect (Negative is Better)', loc='left') ax[1].grid(True) az.plot_parallel(inf_data, var_names=['sigma_att','sigma_def']) az.plot_posterior(fit) """### **PREDICTING NEW SCORES**""" fitdf = fit.to_dataframe() score_preds = fitdf.filter(regex='_score_new*') dict_list = [] OU_dict = {} ML_dict = {} for i in range(1, npredict + 1): mydict = {} OU_list = []
""" Parallel Plot ============= _thumb: .2, .5 """ import arviz as az az.style.use('arviz-darkgrid') data = az.load_arviz_data('centered_eight') ax = az.plot_parallel(data, var_names=['theta', 'tau', 'mu']) ax.set_xticklabels(ax.get_xticklabels(), rotation=70)
# %% az.plot_trace(trace_ncm, var_names=['a']) # %% az.plot_forest(trace_cm, var_names=['a'], r_hat=True, ess=True) # %% summaries = pd.concat([az.summary(trace_cm, var_names=['a']), az.summary(trace_ncm, var_names=['a'])]) summaries.index = ['centered', 'non_centered'] summaries # %% az.plot_autocorr(trace_cm, var_names=['a']) # %% az.plot_autocorr(trace_ncm, var_names=['a']) # %% _, ax = plt.subplots(1, 2, sharey=True, sharex=True, figsize=(10, 5), constrained_layout=True) for idx, tr in enumerate([trace_cm, trace_ncm]): az.plot_pair(tr, var_names=['b', 'a'], coords={'b_dim_0':[0]}, kind='scatter', divergences=True, contour=False, divergences_kwargs={'color':'C1'}, ax=ax[idx]) ax[idx].set_title(['centered', 'non-centered'][idx]) # %% az.plot_parallel(trace_cm) # %%
""" MinMax Parallel Plot ==================== _thumb: .2, .5 """ import matplotlib.pyplot as plt import arviz as az az.style.use("arviz-darkgrid") data = az.load_arviz_data("centered_eight") ax = az.plot_parallel(data, var_names=["theta", "tau", "mu"], norm_method="minmax") ax.set_xticklabels(ax.get_xticklabels(), rotation=70) plt.show()
""" Parallel Plot ============= _thumb: .2, .5 """ import arviz as az data = az.load_arviz_data("centered_eight") ax = az.plot_parallel(data, var_names=["theta", "tau", "mu"], backend="bokeh")